Lei Zhen, Xi Yayan, Shi Mingjian, Xu Guorong, Huang Yuanyuan, Xu Xinlong
Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.
Adv Mater. 2025 Feb;37(6):e2416595. doi: 10.1002/adma.202416595. Epub 2024 Dec 15.
Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy. Remarkably, α-InSe exhibits exceptional THz emission efficiency in the infrared region, surpassing renowned THz emitters like p-InAs and achieving an efficiency approximately eight times the magnitude of standard ZnTe. The power exponent-type pump fluence and quadruple polarization features reveal a unique TPA-driven BPVE, corroborated by a fourth-order nonlinear oscillator model. Notably, TPA-engendered BPVE efficiency approaches 68% of that observed in the single-photon absorption process. Moreover, the TPA responses display clear polarization anisotropy, with considerably relative phase and amplitude driven by synchronous in-plane and out-of-plane polarization, leading to chiral THz waves with high efficiency, tunable orientation, and controllable ellipticity. This work highlights the advantages of TPA-induced BPVE responses in narrow-bandgap ferroelectric semiconductors, enhancing spectral utilization efficiency, aiding high-performance devices based on BPVE, and guiding chiral THz wave design.
体光伏效应(BPVE)可以通过利用无结晶格的固有不对称性来突破肖克利-奎塞尔极限。然而,由于传统铁电材料的宽带隙特性,这种效应主要局限于紫外-可见光谱,从而限制了对红外光驱动高效BPVE的探索。在此,利用波长可调太赫兹(THz)发射光谱,在铁电体α-InSe中发现了从可见光到红外光的巨双光子吸收(TPA)驱动的BPVE。值得注意的是,α-InSe在红外区域表现出优异的太赫兹发射效率,超过了诸如p-InAs等著名的太赫兹发射器,其效率达到标准ZnTe的约八倍。功率指数型泵浦通量和四重极化特征揭示了独特的TPA驱动的BPVE,这得到了四阶非线性振荡器模型的证实。值得注意的是,TPA产生的BPVE效率接近单光子吸收过程中观察到的效率的68%。此外,TPA响应表现出明显的极化各向异性,由同步的面内和面外极化驱动的相对相位和幅度相当大,从而产生具有高效率、可调取向和可控椭圆率的手性太赫兹波。这项工作突出了TPA诱导的BPVE响应在窄带隙铁电半导体中的优势,提高了光谱利用效率,有助于基于BPVE的高性能器件,并指导手性太赫兹波设计。