Plakar G Plason Zuerkanah, Djioko Fredy Harcel Kamgang, Oguzie Emeka Emmanuel, Oguzie Kanayo L
Federal University of Technology, Africa Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Owerri, PMB 1526, Imo State 460114, Nigeria.
ACS Omega. 2024 Nov 23;9(49):48711-48720. doi: 10.1021/acsomega.4c08032. eCollection 2024 Dec 10.
Understanding the principle of the bacteria-anode surface interaction can enhance electron transfer in microbial fuel cells and aid in antibiofouling. In this article, we investigate the adsorption propensity of common adhesins [-acetylglucosamine (NAG), d-glucose, and alginate] found in microbial biofilms on the surface of unmodified and modified graphite through density functional theory and molecular dynamics simulations. DFT results showed that all the molecules could interact with the graphite surface, with NAG (Δ = 3.677 eV) being the most reactive molecule. The Fukui function results show that the most active sites were located at O, C, and N on the adsorbates. The optimum conditions were basic medium at 303 K across all systems. All adsorbates show energetically favorable adsorption, with NAG showing the maximum adsorption energy irrespective of the modification. The modified graphite system showed increased adsorption compared to the unmodified graphite system. Electrostatic interactions, H-bonding, and π-π stacking or interactions are the driving forces responsible for the chemical bond formation in the adsorbates-adsorbent complexes. Altogether, this research provides theoretical support for bacterial adhesin adsorption onto graphite anodes and new ideas for studying bacteria-anode interactions in fuel cells, biofouling and antifouling, dental science, clean energy production, and wastewater treatment.
了解细菌与阳极表面相互作用的原理可以增强微生物燃料电池中的电子转移,并有助于防止生物污染。在本文中,我们通过密度泛函理论和分子动力学模拟,研究了微生物生物膜中常见粘附素(N-乙酰葡糖胺(NAG)、D-葡萄糖和藻酸盐)在未改性和改性石墨表面的吸附倾向。密度泛函理论结果表明,所有分子都能与石墨表面相互作用,其中NAG(Δ = 3.677 eV)是反应活性最高的分子。福井函数结果表明,吸附质上最活跃的位点位于O、C和N处。所有体系的最佳条件均为303 K的碱性介质。所有吸附质均表现出能量上有利的吸附,无论是否改性,NAG的吸附能均最大。与未改性石墨体系相比,改性石墨体系的吸附作用增强。静电相互作用、氢键以及π-π堆积或相互作用是吸附质-吸附剂复合物中化学键形成的驱动力。总之,本研究为细菌粘附素在石墨阳极上的吸附提供了理论支持,并为研究燃料电池中细菌与阳极的相互作用、生物污染与防污、牙科科学、清洁能源生产和废水处理提供了新思路。