Köhler Stephan, Schmid Friederike, Settanni Giovanni
Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany.
Langmuir. 2015 Dec 8;31(48):13180-90. doi: 10.1021/acs.langmuir.5b03371. Epub 2015 Nov 25.
Fibrinogen, a blood glycoprotein of vertebrates, plays an essential role in blood clotting by polymerizing into fibrin when activated. Upon adsorption on material surfaces, it also contributes to determine their biocompatibility and has been implicated in the onset of thrombosis and inflammation at medical implants. Here we present the first fully atomistic simulations of the initial stages of the adsorption process of fibrinogen on mica and graphite surfaces. The simulations reveal a weak adsorption on mica that allows frequent desorption and reorientation events. This adsorption is driven by electrostatic interactions between the protein and the silicate surface as well as the counterion layer. Preferred adsorption orientations for the globular regions of the protein are identified. The adsorption on graphite is found to be stronger with fewer reorientation and desorption events and shows the onset of denaturation of the protein.
纤维蛋白原是脊椎动物血液中的一种糖蛋白,在激活时聚合成纤维蛋白,在血液凝固过程中起着至关重要的作用。吸附在材料表面时,它也有助于确定材料的生物相容性,并与医用植入物上血栓形成和炎症的发生有关。在此,我们展示了纤维蛋白原在云母和石墨表面吸附过程初始阶段的首个全原子模拟。模拟结果显示,纤维蛋白原在云母上的吸附较弱,使得频繁的解吸和重新定向事件得以发生。这种吸附是由蛋白质与硅酸盐表面以及反离子层之间的静电相互作用驱动的。确定了蛋白质球状区域的优先吸附方向。发现纤维蛋白原在石墨上的吸附更强,重新定向和解吸事件更少,并且显示出蛋白质变性的开始。