O'Hern Colin, Caywood Sammantha, Aminova Shakhlo, Kiselev Artem, Volmert Brett, Wang Fei, Sewavi Merlinda-Loriane, Cao Weiheng, Dionise Mia, Muniyandi Priyadharshni, Popa Mirel, Basrai Hussain, Skoric Milana, Boulos George, Huang Amanda, Nuñez-Regueiro Isabel, Chalfoun Nagib, Park Sangbum, Ashammakhi Nureddin, Zhou Chao, Contag Christopher, Aguirre Aitor
bioRxiv. 2024 Dec 4:2024.11.13.623051. doi: 10.1101/2024.11.13.623051.
Interactions between the developing heart and the embryonic immune system are essential for proper cardiac development and maintaining homeostasis, with disruptions linked to various diseases. While human pluripotent stem cell (hPSC)-derived organoids are valuable models for studying human organ function, they often lack critical tissue-resident immune cells. Here, we introduce an advanced human heart assembloid model, termed hHMA (human heart-macrophage assembloid), which fully integrates autologous cardiac tissue- resident macrophages (MPs) with pre-existing human heart organoids (hHOs). Through multi-omic analyses, we confirmed that these MPs are phenotypically similar to embryonic cardiac tissue-resident MPs and remain viable in the assembloids over time. The inclusion of MPs significantly impacts hHMA development, influencing cardiac cellular composition, boosting cellular communication, remodeling the extracellular matrix, promoting ventricular morphogenesis, and enhancing sarcomeric maturation. Our findings indicate that MPs contribute to homeostasis via efferocytosis, integrate into the cardiomyocyte electrical system, and support catabolic metabolism. To demonstrate the versatility of this model, we developed a platform to study cardiac arrhythmias by chronic exposure to pro-inflammatory factors linked to arrhythmogenesis in clinical settings, successfully replicating key features of inflammasome-mediated atrial fibrillation. Overall, this work introduces a robust platform for examining the role of immune cells in cardiac development, disease mechanisms, and drug discovery, bridging the gap between models and human physiology. These findings offer insights into cardiogenesis and inflammation-driven heart disease, positioning the hHMA system as an invaluable tool for future cardiovascular research and therapeutic development.
发育中的心脏与胚胎免疫系统之间的相互作用对于心脏的正常发育和维持体内平衡至关重要,而这些相互作用的破坏与多种疾病相关。虽然人类多能干细胞(hPSC)衍生的类器官是研究人体器官功能的宝贵模型,但它们通常缺乏关键的组织驻留免疫细胞。在此,我们引入了一种先进的人类心脏组装体模型,称为hHMA(人类心脏-巨噬细胞组装体),它将自体心脏组织驻留巨噬细胞(MPs)与预先存在的人类心脏类器官(hHOs)完全整合在一起。通过多组学分析,我们证实这些MPs在表型上与胚胎心脏组织驻留MPs相似,并且随着时间的推移在组装体中保持存活。MPs的加入显著影响hHMA的发育,影响心脏细胞组成,促进细胞间通讯,重塑细胞外基质,促进心室形态发生,并增强肌节成熟。我们的研究结果表明,MPs通过胞葬作用促进体内平衡,整合到心肌细胞电系统中,并支持分解代谢。为了证明该模型的多功能性,我们开发了一个平台,通过长期暴露于临床环境中与心律失常发生相关的促炎因子来研究心律失常,成功复制了炎性小体介导的心房颤动的关键特征。总体而言,这项工作引入了一个强大的平台,用于研究免疫细胞在心脏发育、疾病机制和药物发现中的作用,弥合了模型与人体生理学之间的差距。这些发现为心脏发生和炎症驱动的心脏病提供了见解,将hHMA系统定位为未来心血管研究和治疗开发的宝贵工具。