Kostina Aleksandra, Kiselev Artem, Huang Amanda, Lankerd Haley, Caywood Sammantha, Jurado-Fernandez Ariadna, Volmert Brett, O'Hern Colin, Juhong Aniwat, Liu Yifan, Qiu Zhen, Park Sangbum, Aguirre Aitor
bioRxiv. 2024 Dec 11:2024.12.11.627627. doi: 10.1101/2024.12.11.627627.
Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations. However, the complexity and timing of early embryonic heart development pose significant challenges to studying the molecular mechanisms underlying NCC-related cardiac pathologies. Here, we present a sophisticated functional model of human heart assembloids derived from induced pluripotent stem cells, which, for the first time, recapitulates cardiac NCC integration into the human embryonic heart . NCCs successfully integrated at developmentally relevant stages into heart organoids, and followed developmental trajectories known to occur in the human heart. They demonstrated extensive migration, differentiated into cholinergic neurons capable of generating nerve impulses, and formed mature glial cells. Additionally, they contributed to the mesenchymal populations of the developing outflow tract. Through transcriptomic analysis, we revealed that NCCs acquire molecular features of their cardiac derivatives as heart assembloids develop. NCC-derived parasympathetic neurons formed functional connections with cardiomyocytes, promoting the maturation of the cardiac conduction system. Leveraging this model's cellular complexity and functional maturity, we uncovered that early exposure of NCCs to antidepressants harms the development of NCC derivatives in the context of the developing heart. The commonly prescribed antidepressant Paroxetine disrupted the expression of a critical early neuronal transcription factor, resulting in impaired parasympathetic innervation and functional deficits in cardiac tissue. This advanced heart assembloid model holds great promise for high-throughput drug screening and unraveling the molecular mechanisms underlying NCC-related cardiac formation and congenital heart defects.
Human neural crest heart assembloids resembling the major directions of neural crest differentiation in the human embryonic heart, including parasympathetic innervation and the mesenchymal component of the outflow tract, provide a human-relevant embryonic platform for studying congenital heart defects and drug safety.
神经嵴细胞(NCCs)是一种外胚层来源的多能胚胎细胞群体,在早期发育过程中广泛迁移,并参与多种组织的形成。心脏神经嵴细胞通过协调流出道分隔、瓣膜形成、主动脉弓动脉模式、副交感神经支配以及心脏传导系统的成熟,在心脏发育中发挥关键作用。心脏神经嵴细胞的异常迁移、增殖或分化可导致严重的先天性心血管畸形。然而,早期胚胎心脏发育的复杂性和时间性给研究神经嵴细胞相关心脏疾病的分子机制带来了重大挑战。在此,我们展示了一种由诱导多能干细胞衍生的复杂的人类心脏组装体功能模型,该模型首次概括了心脏神经嵴细胞整合到人类胚胎心脏中的过程。神经嵴细胞在发育相关阶段成功整合到心脏类器官中,并遵循已知在人类心脏中发生的发育轨迹。它们表现出广泛的迁移,分化为能够产生神经冲动的胆碱能神经元,并形成成熟的神经胶质细胞。此外,它们还参与了发育中的流出道的间充质群体的形成。通过转录组分析,我们发现随着心脏组装体的发育,神经嵴细胞获得了其心脏衍生物的分子特征。神经嵴细胞衍生的副交感神经元与心肌细胞形成功能连接,促进心脏传导系统的成熟。利用该模型的细胞复杂性和功能成熟度,我们发现神经嵴细胞在发育中的心脏环境中早期接触抗抑郁药会损害神经嵴细胞衍生物的发育。常用的抗抑郁药帕罗西汀破坏了关键早期神经元转录因子的表达,导致副交感神经支配受损和心脏组织功能缺陷。这种先进的心脏组装体模型在高通量药物筛选以及揭示神经嵴细胞相关心脏形成和先天性心脏缺陷的分子机制方面具有巨大潜力。
类似于人类胚胎心脏中神经嵴分化主要方向的人类神经嵴心脏组装体,包括副交感神经支配和流出道的间充质成分,为研究先天性心脏缺陷和药物安全性提供了一个与人类相关的胚胎平台。