Wang Xuexing, Chu Jie, Wei Chunmei, Xu Jinsong, He Yuan, Chen Chunmei
Department of Oncology, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China.
Department of Oncology, West China-Ziyang Hospital, Sichuan University, Ziyang, Sichuan, China.
PeerJ. 2024 Dec 10;12:e18685. doi: 10.7717/peerj.18685. eCollection 2024.
Nutritional status is a critical indicator of overall health in individuals suffering from malignant tumours, reflecting the complex interplay of various contributing factors. This research focused on identifying and analysing the factors influencing malnutrition among older patients aged ≥65 with malignant tumours and aimed to develop a comprehensive risk model for predicting malnutrition.
This study conducted a retrospective analysis of clinical data from 3,387 older inpatients aged ≥65 years with malignant tumours collected at our hospital from July 1, 2021, to December 31, 2023. The dataset was subsequently divided into training and validation sets at an 8:2 ratio. The nutritional status of these patients was evaluated using the Nutritional Risk Screening Tool 2002 (NRS-2002) and the 2018 Global Leadership Initiative on Malnutrition (GLIM) Standards for Clinical Nutrition and Metabolism. Based on these assessments, patients were categorized into either malnutrition or non-malnutrition groups. Subsequently, a risk prediction model was developed and presented through a nomogram for practical application.
The analysis encompassed 2,715 individuals in the development cohort and 672 in the validation cohort, with a malnutrition prevalence of 40.42%. A significant positive correlation between the incidence of malnutrition and age was observed. Independent risk factors identified included systemic factors, tumour staging (TNM stage), age, Karnofsky Performance Status (KPS) score, history of alcohol consumption, co-infections, presence of ascites or pleural effusion, haemoglobin (HGB) levels, creatinine (Cr), and the neutrophil-to-lymphocyte ratio (NLR). The predictive model exhibited areas under the curve (AUC) of 0.793 (95% confidence interval (CI) [0.776-0.810]) for the development cohort and 0.832 (95% CI [0.801-0.863]) for the validation cohort. Calibration curves indicated Brier scores of 0.186 and 0.190, while the Hosmer-Lemeshow test yielded chi-square values of 5.633 and 2.875, respectively ( > 0.05). Decision curve analysis (DCA) demonstrated the model's clinical applicability and superiority over the NRS-2002, highlighting its potential for valuable clinical application.
This study successfully devised a straightforward and efficient prediction model for malnutrition among older patients aged 65 and above with malignant tumours. The model represents a significant advancement as a clinical tool for identifying individuals at high risk of malnutrition, enabling early intervention with targeted nutritional support and improving patient outcomes.
营养状况是恶性肿瘤患者整体健康的关键指标,反映了多种影响因素之间的复杂相互作用。本研究聚焦于识别和分析影响≥65岁老年恶性肿瘤患者营养不良的因素,并旨在建立一个全面的预测营养不良的风险模型。
本研究对2021年7月1日至2023年12月31日在我院收集的3387例≥65岁老年恶性肿瘤住院患者的临床资料进行回顾性分析。随后将数据集按8:2的比例分为训练集和验证集。使用2002年营养风险筛查工具(NRS-2002)和2018年全球临床营养与代谢营养不良领导倡议(GLIM)标准对这些患者的营养状况进行评估。基于这些评估,将患者分为营养不良组或非营养不良组。随后,开发了一个风险预测模型,并通过列线图展示以供实际应用。
分析纳入了2715例发育队列患者和672例验证队列患者,营养不良患病率为40.42%。观察到营养不良发生率与年龄之间存在显著正相关。确定的独立危险因素包括全身因素、肿瘤分期(TNM分期)、年龄、卡氏功能状态(KPS)评分、饮酒史、合并感染、腹水或胸腔积液的存在、血红蛋白(HGB)水平、肌酐(Cr)以及中性粒细胞与淋巴细胞比值(NLR)。预测模型在发育队列中的曲线下面积(AUC)为0.793(95%置信区间(CI)[0.776-0.810]),在验证队列中为0.832(95%CI[0.801-0.863])。校准曲线显示Brier评分为0.186和0.190,而Hosmer-Lemeshow检验的卡方值分别为5.633和2.875(>0.05)。决策曲线分析(DCA)证明了该模型的临床适用性及其优于NRS-2002的优势,突出了其在临床应用中的潜在价值。
本研究成功设计了一种简单有效的预测模型,用于预测65岁及以上老年恶性肿瘤患者的营养不良情况。该模型作为一种临床工具,在识别营养不良高危个体方面取得了重大进展,能够通过有针对性的营养支持进行早期干预,改善患者预后。