Eles Balint, Rouquette Paul, Siegel Jan, Amra Claude, Lumeau Julien, Moreau Antonin, Hubert Christophe, Zerrad Myriam, Destouches Nathalie
Laboratoire Hubert Curien, Lyon Univ, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, UMR 5516, F-42023, Saint-Etienne, France.
Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
Nanophotonics. 2022 Mar 18;11(10):2303-2318. doi: 10.1515/nanoph-2022-0023. eCollection 2022 May.
Laser-induced transformations of plasmonic metasurfaces pave the way for controlling their anisotropic optical response with a micrometric resolution over large surfaces. Understanding the transient state of matter is crucial to optimize laser processing and reach specific optical properties. This article proposes an experimental and numerical study to follow and explain the diverse irreversible transformations encountered by a random plasmonic metasurface submitted to multiple femtosecond laser pulses at a high repetition rate. A pump-probe spectroscopic imaging setup records pulse after pulse, and with a nanosecond time resolution, the polarized transmission spectra of the plasmonic metasurface, submitted to 50,000 ultrashort laser pulses at 75 kHz. The measurements reveal different regimes, occurring in different ranges of accumulated pulse numbers, where successive self-organized embedded periodic nanostructures with very different periods are observed by electron microscopy characterizations. Analyses are carried out; thanks to laser-induced temperature rise simulations and calculations of the mode effective indices that can be guided in the structure. The overall study provides a detailed insight into successive mechanisms leading to shape transformation and self-organization in the system, their respective predominance as a function of the laser-induced temperature relative to the melting temperature of metallic nanoparticles and their kinetics. The article also demonstrates the dependence of the self-organized period on the guided-mode effective index, which approaches a resonance due to system transformation. Such anisotropic plasmonic metasurfaces have a great potential for security printing or data storage, and better understanding their formation opens the way to smart optimization of their properties.
激光诱导的等离激元超表面转变为在大表面上以微米级分辨率控制其各向异性光学响应铺平了道路。了解物质的瞬态对于优化激光加工并实现特定光学特性至关重要。本文提出了一项实验和数值研究,以跟踪和解释随机等离激元超表面在高重复率下受到多个飞秒激光脉冲作用时所经历的各种不可逆转变。一种泵浦 - 探测光谱成像装置以纳秒时间分辨率逐脉冲记录等离激元超表面的偏振透射光谱,该超表面受到了频率为75kHz的50,000个超短激光脉冲的作用。测量结果揭示了在不同累积脉冲数范围内出现的不同状态,通过电子显微镜表征观察到了具有非常不同周期的连续自组织嵌入式周期性纳米结构。借助激光诱导温度上升模拟和结构中可引导的模式有效折射率计算进行了分析。整体研究详细深入地了解了导致系统中形状转变和自组织的连续机制、它们各自相对于金属纳米颗粒熔点的激光诱导温度的主导地位及其动力学。本文还证明了自组织周期对引导模式有效折射率的依赖性,由于系统转变,该折射率接近共振。这种各向异性等离激元超表面在安全印刷或数据存储方面具有巨大潜力,更好地理解它们的形成方式为智能优化其特性开辟了道路。