Rajšić A, Johnson B C, Collins G S, Hay H C F C
Department of Earth, Atmospheric and Planetary Sciences Purdue University West Lafayette IN USA.
Department of Earth, Environmental and Planetary Sciences Brown University Providence RI USA.
J Geophys Res Planets. 2024 Dec;129(12):e2024JE008562. doi: 10.1029/2024JE008562. Epub 2024 Dec 14.
The formation of complex craters requires some form of transient weakening of target rocks. Acoustic fluidization is one proposed mechanism applied in many numerical simulations of large crater formation. In a companion paper, we describe implementing the Melosh model of acoustic fluidization in the iSALE shock physics code. Here, we explore the effect of Melosh model parameters on crater collapse and determine the range of parameters that reproduce observed crater depth-to-diameter trends on the Earth and Moon. Target viscosity in the Melosh model is proportional to the vibrational wavelength, , and the longevity of acoustic vibrations is ( -quality factor). Our simulations show that affects the size of the fluidized region, its fluidity, and the magnitude of the vibrations, producing a variety of crater collapse styles. The size of the fluidized region is strongly affected by the . The regeneration factor, , controls the amount of (re)generated acoustic energy and its localization. We find that a decrease in leads to less crater collapse and that there are trade-offs between and . This trade-off contributes to the more realistic values than those used in the Block model. The diffusion of vibrations in regions with high stress and strain is controlled by the scattering term, . Compared to the Block model, the Melosh model results in a shallower zone of weakening in complex craters and enhanced strain localization around the crater rim. The parameter set that produces best depth-diameter trends is = 0.2 impactor radius, = 10-50, = 0.025-0.1, and = 10- .
复杂撞击坑的形成需要目标岩石某种形式的瞬时弱化。声流态化是一种在许多大型撞击坑形成的数值模拟中应用的机制。在一篇配套论文中,我们描述了如何在iSALE激波物理代码中实现声流态化的梅洛什模型。在这里,我们探讨梅洛什模型参数对撞击坑坍塌的影响,并确定能重现地球和月球上观测到的撞击坑深度与直径趋势的参数范围。梅洛什模型中的目标粘度与振动波长λ成正比,声振动的寿命为Q(品质因数)。我们的模拟表明,λ会影响流态化区域的大小、其流动性以及振动幅度,从而产生多种撞击坑坍塌样式。流态化区域的大小受λ的强烈影响。再生因子R控制着(再)产生的声能数量及其局部化。我们发现R的减小会导致撞击坑坍塌减少,并且在R和Q之间存在权衡。这种权衡使得得到的值比布洛克模型中使用的值更符合实际。振动在高应力和高应变区域的扩散由散射项κ控制。与布洛克模型相比,梅洛什模型导致复杂撞击坑中弱化区域更浅,并且撞击坑边缘周围的应变局部化增强。产生最佳深度 - 直径趋势的参数集为:λ = 0.2×撞击体半径,R = 10 - 50,Q = 0.025 - 0.1,以及κ = 10 - 。