Suppr超能文献

QF-LCA数据集:用于系统状态模拟和强预测的量子场透镜编码算法

QF-LCA dataset: Quantum Field Lens Coding Algorithm for system state simulation and strong predictions.

作者信息

Alipour Philip Baback, Gulliver Thomas Aaron

机构信息

Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada.

出版信息

Data Brief. 2024 Aug 13;57:110789. doi: 10.1016/j.dib.2024.110789. eCollection 2024 Dec.

Abstract

Quantum field lens coding algorithm (QF-LCA) dataset is useful for simulating systems and predict system events with high probability. This is achieved by computing QF lens distance-based variables associated to event probabilities from the dataset produced by field lenses that encode system states on a quantum level. The probability of a state transition (ST), doubles in prediction values at the decoding step, e.g., ST probabilities of into based on a single field (SF) transform into a quantum double-field (QDF). This transformation doubles the ST probability space via the field's scalar , in a published QDF method article. A QDF, as a double-field computation (DFC) model, simulates thermodynamic systems in predicting events by producing datasets from a QF-LCA, using laser cooling methods relative to high energy systems. The dataset can be used to, e.g., train quantum algorithms via quantum artificial intelligence (QAI) for a QF-LCA user. The user then decides after the algorithm predicts and suggests an efficient energy path for the system to choose. For example, an -particle system simulated as a heat engine, by QAI classifier(s), predicts and reroutes particle energy paths on a logarithmic input-output scale. To determine system's energy change, the QDF lens code (DFC) measures entanglement entropy (EE). The algorithm's classification of EE values distinguishes entangled states in the system. The QF-LCA program employs the dataset to achieve an automated prediction and classification method, rather than dataset's manual use and analysis by the user. As the system evolves in its distribution of states, those particles not reaching a desired energy state (a target state or TS), i.e., the probability of observing a ground or excited state (GS or ES) outcome at the decoding step, can be rerouted by the heat engine to satisfy a TS outcome. This establishes a GS or ES energy profile to access and classify states by a classifier. The data points (qubits) in this profile are inverse distance-based and labelled for a specific class. After learning the profile, the classifier decodes and predicts the next system state. A QDF AI game "" is developed to validate the dataset as the 's map for a classical/quantum prediction where the 's of states and the user's 's correlate in their value difference, . Dataset validation results are mapped to an intelligent decision simulator (IDS) as a QAI map. This maximizes system efficiency on a TS by EE of energy states (distributed in the system). Future additions to the dataset from the QAI map program can improve quantum algorithms to determine which particles of the system participate in a phase transition after state prediction. QF-LCA applications are in data science, security, forensics, particle physics, etc., such as retrieving or reconstructing information by distinguishing particle states from an evidence sample. Examples are, reconstruct damaged DNA strands of cells to predict a virus's TS, or cancer cell, its spread and growth against healthy cells, identify forged documents from genuine based on QDF's values, and so on.

摘要

量子场透镜编码算法(QF-LCA)数据集对于模拟系统和高概率预测系统事件很有用。这是通过计算与事件概率相关的基于量子场透镜距离的变量来实现的,这些变量来自在量子水平上对系统状态进行编码的场透镜产生的数据集。状态转换(ST)的概率在解码步骤中的预测值中翻倍,例如,基于单场(SF)的 状态转换概率转换为量子双场(QDF)。在已发表的QDF方法文章中,这种转换通过场的标量 使ST概率空间翻倍。作为双场计算(DFC)模型的QDF,通过使用相对于高能系统的激光冷却方法,从QF-LCA生成数据集来模拟热力学系统以预测事件。该数据集可用于,例如,通过量子人工智能(QAI)为QF-LCA用户训练量子算法。然后,在算法进行预测并为系统建议一条有效的能量路径后,用户做出决定。例如,通过QAI分类器模拟为热机的 粒子系统,在对数输入-输出尺度上预测并重新规划粒子能量路径。为了确定系统的能量变化,QDF透镜代码(DFC)测量纠缠熵(EE)。算法对EE值的分类区分了系统中的纠缠态。QF-LCA程序利用该数据集实现自动预测和分类方法,而不是由用户手动使用和分析数据集。随着系统状态分布的演变,那些未达到期望能量状态(目标状态或TS)的粒子,即在解码步骤观察到基态或激发态(GS或ES)结果的概率,可以由热机重新规划路径以满足TS结果。这建立了一个GS或ES能量分布图,以便分类器访问和分类状态。此分布图中的数据点(量子比特)基于反距离,并针对特定类别进行标记。在学习该分布图后,分类器对下一个系统状态进行解码和预测。开发了一个QDF人工智能游戏“ ”来验证该数据集作为经典/量子预测的 地图,其中状态的 和用户的 在其值差 中相关。数据集验证结果作为QAI地图映射到智能决策模拟器(IDS)。这通过能量状态(分布在系统中)的EE使系统在TS上的效率最大化。来自QAI地图程序对数据集的未来补充可以改进量子算法,以确定系统中的哪些粒子在状态预测后参与相变。QF-LCA的应用领域包括数据科学、安全、法医学、粒子物理学等,例如通过从证据样本中区分粒子状态来检索或重建信息。例如,重建细胞受损的DNA链以预测病毒的TS,或癌细胞及其相对于健康细胞的扩散和生长,基于QDF的 值识别真实文件中的伪造文件,等等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc49/11639746/211d95edbcab/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验