Alipour Philip B, Gulliver T Aaron
Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8W 2Y2, Canada.
MethodsX. 2023 Mar 29;10:102136. doi: 10.1016/j.mex.2023.102136. eCollection 2023.
This study develops a method to implement a quantum field lens coding and classification algorithm for two quantum double-field (QDF) system models: 1- a QDF model, and 2- a QDF lens coding model by a DF computation (DFC). This method determines entanglement entropy (EE) by implementing QDF operators in a quantum circuit. The physical link between the two system models is a quantum field lens coding algorithm (QF-LCA), which is a QF lens distance-based, implemented on real -qubit machines. This is with the possibility to train the algorithm for making strong predictions on phase transitions as the shared objective of both models. In both system models, QDF transformations are simulated by a DFC algorithm where QDF data are collected and analyzed to represent energy states and transitions, and determine entanglement based on EE. The method gives a list of steps to simulate and optimize any thermodynamic system on macro and micro-scale observations, as presented in this article:•The implementation of QF-LCA on quantum computers with EE measurement under a QDF transformation.•Validation of QF-LCA as implemented compared to quantum Fourier transform (QFT) and its inverse, QFT .•Quantum artificial intelligence (QAI) features by classifying QDF with strong measurement outcome predictions.
本研究开发了一种方法,用于为两种量子双场(QDF)系统模型实现量子场透镜编码和分类算法:1 - 一种QDF模型,以及2 - 一种通过双场计算(DFC)实现的QDF透镜编码模型。该方法通过在量子电路中实现QDF算子来确定纠缠熵(EE)。这两种系统模型之间的物理联系是量子场透镜编码算法(QF - LCA),它是一种基于QF透镜距离的算法,在真实量子比特机器上实现。这使得有可能训练该算法,以便像两个模型的共同目标那样对相变做出有力预测。在这两种系统模型中,QDF变换由DFC算法模拟,其中收集并分析QDF数据以表示能量状态和跃迁,并基于EE确定纠缠。如本文所述,该方法给出了在宏观和微观尺度观测上模拟和优化任何热力学系统的一系列步骤:
• 在量子计算机上通过QDF变换下的EE测量来实现QF - LCA。
• 将所实现的QF - LCA与量子傅里叶变换(QFT)及其逆变换QFT⁻¹进行比较以验证。
• 通过对具有强测量结果预测的QDF进行分类来实现量子人工智能(QAI)特性。