Suppr超能文献

光子分形晶格中的非线性角态理论。

Theory of nonlinear corner states in photonic fractal lattices.

作者信息

Ren Boquan, Kartashov Yaroslav V, Maczewsky Lukas J, Kirsch Marco S, Wang Hongguang, Szameit Alexander, Heinrich Matthias, Zhang Yiqi

机构信息

Key Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia.

出版信息

Nanophotonics. 2023 Sep 11;12(19):3829-3838. doi: 10.1515/nanoph-2023-0443. eCollection 2023 Sep.

Abstract

We study linear and nonlinear higher-order topological insulators (HOTIs) based on waveguide arrays arranged into Sierpiński gasket and Sierpiński carpet structures, both of which have non-integer effective Hausdorff dimensionality. Such fractal structures possess different discrete rotational symmetries, but both lack transverse periodicity. Their characteristic feature is the existence of multiple internal edges and corners in their optical potential landscape, and the formal absence of an insulating bulk. Nevertheless, we show that a systematic geometric shift of the waveguides in the first generation of such fractal arrays, which affects the coupling strengths between sites of this building block as well as in subsequent structure generations, enables the formation of corner states of topological origin at the outer corners of the array. We find that, in contrast to HOTIs based on periodic arrays, Sierpiński gasket arrays always support topological corner states, irrespective of the direction of the shift of the waveguides, while in Sierpiński carpet structures, corner states emerge only for one direction of the waveguide shift. We also find families of corner solitons bifurcating from linear corner states of fractal structures that remain stable practically in the entire gap in which they form. These corner states can be efficiently excited by injecting Gaussian beams into the outer corner sites of the fractal arrays. Our results pave the way toward the investigation of nonlinear effects in topological insulators with non-integer dimensionality and enrich the variety of higher-order topological states.

摘要

我们研究基于排列成谢尔宾斯基垫圈和谢尔宾斯基地毯结构的波导阵列的线性和非线性高阶拓扑绝缘体(HOTIs),这两种结构都具有非整数有效豪斯多夫维数。这种分形结构具有不同的离散旋转对称性,但都缺乏横向周期性。它们的特征是在其光势景观中存在多个内部边缘和角,并且形式上没有绝缘体态。然而,我们表明,在这种分形阵列的第一代中对波导进行系统的几何移位,这会影响该构建块的位点之间以及后续结构代中的耦合强度,能够在阵列的外角处形成拓扑起源的角态。我们发现,与基于周期性阵列的HOTIs不同,谢尔宾斯基垫圈阵列总是支持拓扑角态,而与波导移位的方向无关,而在谢尔宾斯基地毯结构中,角态仅在波导移位的一个方向上出现。我们还发现了从分形结构的线性角态分叉出的角孤子族,它们在形成它们的整个能隙中实际上保持稳定。通过将高斯光束注入分形阵列的外角位点,可以有效地激发这些角态。我们的结果为研究具有非整数维数的拓扑绝缘体中的非线性效应铺平了道路,并丰富了高阶拓扑态的种类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/731d/11636470/a86a281ec3b0/j_nanoph-2023-0443_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验