Suppr超能文献

作为量子技术光学可寻址平台的自旋承载分子。

Spin-bearing molecules as optically addressable platforms for quantum technologies.

作者信息

Kuppusamy Senthil Kumar, Hunger David, Ruben Mario, Goldner Philippe, Serrano Diana

机构信息

Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

出版信息

Nanophotonics. 2024 Oct 24;13(24):4357-4379. doi: 10.1515/nanoph-2024-0420. eCollection 2024 Nov.

Abstract

Efforts to harness quantum hardware relying on quantum mechanical principles have been steadily progressing. The search for novel material platforms that could spur the progress by providing new functionalities for solving the outstanding technological problems is however still active. Any physical property presenting two distinct energy states that can be found in a long-lived superposition state can serve as a quantum bit (qubit), the basic information processing unit in quantum technologies. Molecular systems that can feature electron and/or nuclear spin states together with optical transitions are one of the material platforms that can serve as optically addressable qubits. The attractiveness of molecular systems for quantum technologies relies on the fact that molecular structures of atomically defined nature can be obtained in endless diversity of chemical compositions. Crucially, by harnessing the molecular design protocols, the optical and spin (electronic and nuclear) properties of molecules can be tailored, aiding the design of optically addressable spin qubits and quantum sensors. In this contribution, we present a concise and collective discussion of optically addressable spin-bearing molecules - namely, organic molecules, transition metal (TM) and rare-earth ion (REI) complexes - and highlight recent results such as chemical tuning of optical and electron spin quantum coherence, optical spin initialization and readout, intramolecular quantum teleportation, optical coherent storage, and photonic-enhanced optical addressing. We envision that optically addressable spin-carrying molecules could become a scalable building block of quantum hardware for applications in the fields of quantum sensing, quantum communication and quantum computing.

摘要

依靠量子力学原理来利用量子硬件的努力一直在稳步推进。然而,寻找能够通过提供新功能来解决突出技术问题从而推动进展的新型材料平台的工作仍在积极进行。任何呈现两种不同能量状态且能处于长寿命叠加态的物理特性都可作为量子比特(qubit),即量子技术中的基本信息处理单元。能够同时具有电子和/或核自旋状态以及光学跃迁的分子系统是可作为光学可寻址量子比特的材料平台之一。分子系统在量子技术中的吸引力在于,具有原子定义性质的分子结构可以通过无穷多样的化学组成来获得。至关重要的是,通过利用分子设计方案,可以对分子的光学和自旋(电子和核)性质进行定制,这有助于设计光学可寻址自旋量子比特和量子传感器。在本论文中,我们对光学可寻址的含自旋分子——即有机分子、过渡金属(TM)和稀土离子(REI)配合物——进行了简洁而全面的讨论,并重点介绍了近期的成果,如光学和电子自旋量子相干的化学调控、光学自旋初始化和读出、分子内量子隐形传态、光学相干存储以及光子增强光学寻址。我们设想,光学可寻址的含自旋分子可能成为量子硬件的可扩展构建模块,用于量子传感、量子通信和量子计算领域的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83da/11636422/eab0d371e932/j_nanoph-2024-0420_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验