Suppr超能文献

控制和单脉冲读出嵌入在纳米光子腔中的离子。

Control and single-shot readout of an ion embedded in a nanophotonic cavity.

机构信息

Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.

Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nature. 2020 Apr;580(7802):201-204. doi: 10.1038/s41586-020-2160-9. Epub 2020 Mar 30.

Abstract

Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication. Building quantum networks requires scalable quantum light-matter interfaces based on atoms, ions or other optically addressable qubits. Solid-state emitters, such as quantum dots and defects in diamond or silicon carbide, have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light-matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f-4f optical and spin transitions suited to quantum storage and transduction, but only recently have single rare-earth ions been isolated and coupled to nanocavities. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single Yb ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet.

摘要

利用光学网络远距离分发纠缠是一种有趣的宏观量子现象,可应用于高级计算和安全通信的量子系统。构建量子网络需要基于原子、离子或其他可光学寻址量子比特的可扩展量子光物质接口。固态发射器,如量子点和金刚石或碳化硅中的缺陷,已成为此类接口的有前途的候选者。到目前为止,这些系统还无法扩展,这促使人们开发替代平台。一个核心挑战是确定表现出相干光学和自旋跃迁的发射器,同时与光子腔耦合,以增强光物质相互作用并将发射引导到光纤中。人们知道晶体中的稀土离子具有非常相干的 4f-4f 光学和自旋跃迁,适合量子存储和转换,但直到最近才将单个稀土离子分离并与纳米腔耦合。朝着使用单个稀土离子实现量子网络的关键下一步是实现光子谐振器中的长自旋相干性和单拍读出。在这里,我们演示了单个 Yb 离子的自旋初始化、相干光学和自旋操控,以及与在钇正钒酸盐基质晶体中制造的纳米光子腔耦合的单个 Yb 离子的超精细自旋态的高保真度单拍光读出。这些离子的光学和自旋跃迁对磁场波动的一阶不敏感,使光学线宽小于 1 兆赫,腔耦合离子的自旋相干时间超过 30 毫秒,即使在高于 1 开尔文的温度下也是如此。腔增强的光发射率促进了有效的自旋初始化和单拍读出,条件保真度大于 95%。这些结果展示了基于单个相干稀土离子的固态平台,用于未来的量子互联网。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验