Busch Alexandra N, Budzinski Roberto C, Pasini Federico W, Mináč Ján, Michaels Jonathan A, Roussy Megan, Gulli Roberto A, Corrigan Benjamin W, Pruszynski J Andrew, Martinez-Trujillo Julio, Muller Lyle E
Department of Mathematics, Western University, London ON, Canada.
Western Institute for Neuroscience, Western University, London ON, Canada.
ArXiv. 2025 Jan 15:arXiv:2412.03804v2.
Recent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor. We introduce a new mathematical operation to decompose complex spike patterns into a set of simple, structured elements. This creates a mathematical language that allows comparing spike patterns across trials, detecting sub-patterns, and making links to behaviour via a clear distance measure. We first demonstrate the method using Neuropixel recordings from macaque motor cortex. We then apply the method to dual Utah array recordings from macaque prefrontal cortex, where this technique reveals previously unseen structure that can predict both memory-guided decisions and errors in a virtual-reality working memory task. These results demonstrate that this technique provides a powerful new approach to understand structure in the spike times of neural populations, at a scale that will continue to grow more and more rapidly in upcoming years.
神经记录技术的最新进展使得在清醒、行为活动的动物身上同时记录数百到数千个神经元的动作电位成为可能。然而,对所得数据中的尖峰模式进行特征描述,并将这些模式与行为联系起来,仍然是一项具有挑战性的任务。缺乏一种用于描述多个主体(神经元)发出的可变数量事件(尖峰)的严格数学语言是一个重要的限制因素。我们引入了一种新的数学运算,将复杂的尖峰模式分解为一组简单的、结构化的元素。这创造了一种数学语言,允许跨试验比较尖峰模式、检测子模式,并通过明确的距离度量与行为建立联系。我们首先使用猕猴运动皮层的神经像素记录来演示该方法。然后,我们将该方法应用于猕猴前额叶皮层的双犹他阵列记录,该技术揭示了以前未见过的结构,这些结构可以预测虚拟现实工作记忆任务中的记忆引导决策和错误。这些结果表明,该技术为理解神经群体尖峰时间的结构提供了一种强大的新方法,其规模在未来几年将继续越来越迅速地增长。