Suppr超能文献

头颈部放疗后唾液腺功能的评估与预测:一项系统评价

Assessment and Prediction of Salivary Gland Function After Head and Neck Radiotherapy: A Systematic Review.

作者信息

Le Guevelou J, Palard-Novello X, Kammerer E, Baty M, Perazzi M, Larnaudie A, De Crevoisier R, Castelli J

机构信息

Department of Radiotherapy, Centre Eugène Marquis, Rennes, France.

Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France.

出版信息

Cancer Med. 2024 Dec;13(24):e70494. doi: 10.1002/cam4.70494.

Abstract

BACKGROUND

Modern imaging techniques with magnetic resonance imaging (MRI) or positron emission tomography/computed tomography (PET/CT) have recently been developed to assess radiation-induced damage to salivary structures. The primary aim of this review was to summarize evidence on the imaging modalities used for the assessment and prediction of xerostomia after head and neck radiotherapy (RT).

METHODS

A systematic review of the literature was performed using successively the MeSH terms "PET," "MRI," "scintigraphy," "xerostomia," and "radiotherapy."

RESULTS

Salivary excretion flow following head and neck RT is correlated with the dose delivered to both parotid and submandibular glands. Salivary gland standardized uptake value extracted from PET/CT following RT has been shown to be correlated with SEF. Models including early SUV decline or ADC increase during RT and clinical parameters can help predict the loss of salivary function after RT.

CONCLUSIONS

Modern imaging parameters appear to be correlated with salivary gland scintigraphy parameters. Models including functional parameters extracted from either PET/CT or MRI unveil new possibilities for adaptive treatment in a selected population of patients.

摘要

背景

近年来已开发出利用磁共振成像(MRI)或正电子发射断层扫描/计算机断层扫描(PET/CT)的现代成像技术,以评估辐射对唾液腺结构造成的损伤。本综述的主要目的是总结用于评估和预测头颈部放疗(RT)后口干症的成像方式的相关证据。

方法

依次使用医学主题词“PET”“MRI”“闪烁扫描法”“口干症”和“放疗”对文献进行系统综述。

结果

头颈部放疗后的唾液排泄流量与腮腺和颌下腺所接受的剂量相关。放疗后从PET/CT中提取的唾液腺标准化摄取值已被证明与唾液排泄流量相关。包括放疗期间早期SUV下降或ADC增加以及临床参数的模型有助于预测放疗后唾液功能的丧失。

结论

现代成像参数似乎与唾液腺闪烁扫描参数相关。包括从PET/CT或MRI中提取的功能参数的模型为特定患者群体的适应性治疗揭示了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c325/11647549/554b1365f2f7/CAM4-13-e70494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验