Suppr超能文献

通过在线监测氧传递速率对可再生原料上微生物碳源偏好进行无采样研究。

Sampling-free investigation of microbial carbon source preferences on renewable feedstocks via online monitoring of oxygen transfer rate.

作者信息

Grebe Luca Antonia, Richter Paul, Altenkirch Torben, Mann Marcel, Müller Markus Jan, Büchs Jochen, Magnus Jørgen Barsett

机构信息

AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.

Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.

出版信息

Bioprocess Biosyst Eng. 2025 Mar;48(3):413-425. doi: 10.1007/s00449-024-03117-x. Epub 2024 Dec 16.

Abstract

The transition towards sustainable bioprocesses requires renewable feedstocks to reduce dependency on finite resources. While plant-based feedstocks offer significant potential, their complex composition poses new challenges. The microorganisms often exhibit polyauxic growth when presented with multiple carbon sources simultaneously, consuming them in a distinct order according to their carbon source preferences. The traditional investigation of polyauxic growth involves laborious sampling and offline analysis, hindering high-throughput screenings. This study introduces an efficient method for identifying carbon source consumption and their order of metabolization by various microorganisms using the respiration activity monitoring system (RAMOS) in shake flasks. As aerobic carbon metabolization and oxygen consumption are strictly correlated, the characteristic phases of polyauxic growth are visible in the oxygen transfer rate (OTR) and can be assigned to the respective carbon sources. An extended 16-flask RAMOS enables real-time monitoring of microbial respiration on up to seven carbon sources and one reference cultivation simultaneously, thus providing crucial insights into their metabolization without extensive sampling and offline analysis. The method's accuracy was validated against traditional high-performance liquid chromatography (HPLC). Its applicability to both fast-growing Escherichia coli (investigated carbon sources: glucose, arabinose, sorbitol, xylose, and glycerol) and slow-growing Ustilago trichophora (glucose, glycerol, xylose, sorbitol, rhamnose, galacturonic acid, and lactic acid) was demonstrated. Additionally, it was successfully applied to the plant-based second-generation feedstock corn leaf hydrolysate, revealing the bioavailability of the included carbon sources (glucose, sucrose, arabinose, xylose, and galactose) and their order of metabolization by Ustilago maydis.

摘要

向可持续生物过程的转变需要可再生原料,以减少对有限资源的依赖。虽然植物基原料具有巨大潜力,但其复杂的成分带来了新的挑战。当同时面对多种碳源时,微生物通常会呈现多峰生长,根据它们对碳源的偏好按特定顺序消耗这些碳源。传统的多峰生长研究涉及繁琐的采样和离线分析,阻碍了高通量筛选。本研究介绍了一种利用摇瓶中的呼吸活性监测系统(RAMOS)来识别各种微生物碳源消耗及其代谢顺序的有效方法。由于好氧碳代谢与氧气消耗严格相关,多峰生长的特征阶段在氧气传递速率(OTR)中可见,并可归因于相应的碳源。一个扩展的16瓶RAMOS能够同时实时监测多达七种碳源和一种对照培养物的微生物呼吸,从而在无需大量采样和离线分析的情况下提供关于它们代谢的关键见解。该方法的准确性通过与传统的高效液相色谱(HPLC)对比进行了验证。证明了其对快速生长的大肠杆菌(研究的碳源:葡萄糖、阿拉伯糖、山梨醇、木糖和甘油)和生长缓慢的黑粉菌(葡萄糖、甘油、木糖、山梨醇、鼠李糖、半乳糖醛酸和乳酸)均适用。此外,它成功应用于植物基第二代原料玉米叶水解物,揭示了其中所含碳源(葡萄糖、蔗糖、阿拉伯糖、木糖和半乳糖)的生物可利用性及其被玉米黑粉菌代谢的顺序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6576/11865135/779c826f1677/449_2024_3117_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验