Collins Stephen B, Singh Ranvir, Mead Stuart R, Horne David J, Roygard Jon K F
School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.
Horizons Regional Council, Private Bag 11 025, Palmerston North, 4442, New Zealand.
Environ Monit Assess. 2024 Dec 16;197(1):58. doi: 10.1007/s10661-024-13427-y.
Mitigating the impacts of agricultural nutrients (nitrogen and phosphorus) on water quality requires a clear understanding of their transport pathways and transformation processes from land to receiving waters. For nitrate, which is subject to subsurface denitrification, it is therefore important to assess the spatial variability and temporal stability of groundwater redox conditions, as nitrate reduction typically occurs in reducing conditions. This paper presents a robust assessment of a large groundwater quality data set collected across New Zealand landscapes, develops methods to impute missing groundwater redox-sensitive variables and characterises the spatial variability and temporal stability of groundwater redox conditions against relevant landscape hydrogeochemical characteristics. Random forest and extreme gradient boosting (XGBoost) outperformed linear regression in predicting missing Mn values, achieving higher accuracy (R > 0.8) and lower error (RMSE < 0.2 mg/L). Analysis of groundwater redox conditions highlights considerable spatial variability, particularly influenced by subsurface geology (rock types) and soil characteristics such as soil carbon and drainage across various hydrogeological settings. Our findings also reveal a higher prevalence of oxidised redox status in shallower groundwater and greater temporal stability in oxidised conditions across New Zealand landscapes. These insights have significant implications for targeted management strategies to reduce nitrate losses from farming activities, particularly in oxidised, shallow groundwater across different hydrogeological land units.
减轻农业养分(氮和磷)对水质的影响需要清楚了解其从陆地到受纳水体的传输途径和转化过程。对于会发生地下反硝化作用的硝酸盐而言,评估地下水氧化还原条件的空间变异性和时间稳定性很重要,因为硝酸盐还原通常发生在还原条件下。本文对新西兰各地收集的大量地下水质量数据集进行了全面评估,开发了估算缺失的对地下水氧化还原敏感变量的方法,并根据相关景观水文地球化学特征描述了地下水氧化还原条件的空间变异性和时间稳定性。在预测缺失的锰值方面,随机森林和极端梯度提升(XGBoost)比线性回归表现更好,具有更高的准确性(R>0.8)和更低的误差(RMSE<0.2mg/L)。对地下水氧化还原条件的分析突出了显著的空间变异性,特别是受不同水文地质环境下的地下地质(岩石类型)和土壤特征(如土壤碳和排水情况)的影响。我们的研究结果还表明,在新西兰各地的景观中,较浅的地下水中氧化还原状态的氧化情况更为普遍,且氧化条件下的时间稳定性更高。这些见解对于减少农业活动中硝酸盐损失的针对性管理策略具有重要意义,特别是在不同水文地质土地单元的氧化浅层地下水中。