Clarke Russell J, Nice Isaac J, Hicks Jason C
Department of Chemical and Biomolecular Engineering, 250 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States.
J Am Chem Soc. 2025 Jan 8;147(1):585-593. doi: 10.1021/jacs.4c12388. Epub 2024 Dec 16.
Nonthermal plasma-surface interactions enable transformative advancements in green chemistry, healthcare, materials processing, pollution abatement, and the ever-growing area of plasma catalysis. In the context of plasma catalysis, the fate of the active sites during plasma treatment has remained enigmatic, and observation of low-temperature plasma-catalyst events has been challenging. The induction of strong metal-support interactions (SMSI) through high-temperature hydrogen treatment is a well-documented and established, yet limited, method to impact selectivity and stability of noble metal catalysts on reducible supports. Thermally driven SMSI occurs through reduction and subsequent migration of the support to the surface of exposed metal sites, thus affecting the catalyst both electronically and geometrically and serving as an ideal system to evaluate dynamic plasma-catalyst interactions. In this study, a dielectric barrier discharge of hydrogen was used to successfully induce a plasma-SMSI state (P-SMSI) in niobia-supported platinum particles at bulk-gas temperatures as low as -30 °C, which enhances the selectivity for propane dehydrogenation and offers conclusive evidence of plasma-catalyst interactions. Time-resolved spectroscopic evidence of this phenomenon was obtained in situ using a cryogenically cooled plasma IR transmission cell, which provided evidence of diffusion-controlled surface migration. Collectively, P-SMSI constitutes a promising, low-impact technology for synthesizing SMSI-enhanced catalysts with controllable active sites, and knowledge of the nonthermal plasma-catalyst dynamics is critical in designing materials for specific applications or selecting conditions of operation.
非热等离子体与表面的相互作用推动了绿色化学、医疗保健、材料加工、污染治理以及不断发展的等离子体催化领域的变革性进展。在等离子体催化的背景下,等离子体处理过程中活性位点的命运一直是个谜,观察低温等离子体与催化剂的相互作用也颇具挑战。通过高温氢气处理诱导强金属-载体相互作用(SMSI)是一种有充分文献记载且已确立但有局限性的方法,用于影响贵金属催化剂在可还原载体上的选择性和稳定性。热驱动的SMSI通过载体的还原以及随后向暴露金属位点表面的迁移而发生,从而在电子和几何结构上影响催化剂,并成为评估动态等离子体-催化剂相互作用的理想体系。在本研究中,利用氢气的介质阻挡放电在低至-30°C的体相气体温度下,成功地在氧化铌负载的铂颗粒中诱导出等离子体-SMSI状态(P-SMSI),这提高了丙烷脱氢的选择性,并为等离子体-催化剂相互作用提供了确凿证据。使用低温冷却的等离子体红外透射池原位获得了这一现象的时间分辨光谱证据,该证据提供了扩散控制的表面迁移的证据。总体而言,P-SMSI是一种很有前景的、低影响的技术,可用于合成具有可控活性位点的SMSI增强型催化剂,了解非热等离子体-催化剂动力学对于设计特定应用的材料或选择操作条件至关重要。