Otor Hope O, Hicks Jason C
Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.
Energy Fuels. 2025 Mar 21;39(13):6118-6126. doi: 10.1021/acs.energyfuels.5c00117. eCollection 2025 Apr 3.
Plasma-assisted catalysis has advanced in recent years, particularly for transforming stable reactants at atmospheric pressure and ambient temperature. However, achieving a deeper understanding of the many plasma and catalytic contributions remains a significant goal, as improving product yield and selectivity in plasma catalysis depends on proper catalyst selection, which is often challenging due to the complex interplay between plasma-phase and plasma-surface reactions. A sequential methodology has emerged as a means to decouple the catalyst activity from plasma-phase reactions. In this approach, nonthermal plasma is used in one step to activate and/or convert a gas phase or surface bound reactant, while in a second step, the catalyst directs product formation under steady-state or temperature-programmed conditions. This review examines studies using this technique for reactions involving N, CO, and SO, offering insights into reaction mechanisms and catalyst behavior/selection for these transformations. These systematic studies provide a framework that can be applied to other plasma-assisted reactions. We also highlight remaining questions, propose directions for future studies, and discuss the potential of applying this methodology to other reaction systems.
近年来,等离子体辅助催化取得了进展,特别是在大气压和环境温度下转化稳定反应物方面。然而,要更深入地理解等离子体和催化的诸多作用,仍然是一个重要目标,因为提高等离子体催化中的产物产率和选择性取决于合适的催化剂选择,而由于等离子体相和等离子体-表面反应之间复杂的相互作用,这往往具有挑战性。一种顺序方法已成为将催化剂活性与等离子体相反应解耦的手段。在这种方法中,第一步使用非热等离子体来活化和/或转化气相或表面结合的反应物,而在第二步中,催化剂在稳态或程序升温条件下引导产物形成。本综述考察了使用该技术进行涉及氮、一氧化碳和二氧化硫反应的研究,深入了解这些转化反应的机理以及催化剂的行为/选择。这些系统研究提供了一个可应用于其他等离子体辅助反应的框架。我们还强调了尚存的问题,提出了未来研究的方向,并讨论了将该方法应用于其他反应体系的潜力。