Suppr超能文献

二维X光片中用于牙种植体分类和种植体周围病理学识别的人工智能:一项系统综述

Artificial intelligence for dental implant classification and peri-implant pathology identification in 2D radiographs: A systematic review.

作者信息

Bonfanti-Gris M, Ruales E, Salido M P, Martinez-Rus F, Özcan M, Pradies G

机构信息

Department of Conservative Dentistry and Prostheses, Complutense University of Madrid. Plaza Ramon y Cajal, s/n. 28040, Madrid, Spain.

Clinic of Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich. Plattenstrasse, 11, 8032, Zurich, Switzerland.

出版信息

J Dent. 2025 Feb;153:105533. doi: 10.1016/j.jdent.2024.105533. Epub 2024 Dec 15.

Abstract

OBJECTIVE

This systematic review aimed to summarize and evaluate the available information regarding the performance of artificial intelligence on dental implant classification and peri-implant pathology identification in 2D radiographs.

DATA SOURCES

Electronic databases (Medline, Embase, and Cochrane) were searched up to September 2024 for relevant observational studies and both randomized and controlled clinical trials. The search was limited to studies published in English from the last 7 years. Two reviewers independently conducted both study selection and data extraction. Risk of bias assessment was also performed individually by both operators using the Quality Assessment Diagnostic Tool (QUADAS-2).

STUDY SELECTION

Of the 1,465 records identified, 29 references were selected to perform qualitative analysis. The study characteristics were tabulated in a self-designed table. QUADAS-2 tool identified 10 and 15 studies to respectively have a high and an unclear risk of bias, while only four were categorized as low risk of bias. Overall, accuracy rates for dental implant classification ranged from 67 % to 99 %. Peri-implant pathology identification showed results with accuracy detection rates over 78,6 %.

CONCLUSIONS

While AI-based models, particularly convolutional neural networks, have shown high accuracy in dental implant classification and peri-implant pathology detection, several limitations must be addressed before widespread clinical application. More advanced AI techniques, such as Federated Learning should be explored to improve the generalizability and efficiency of these models in clinical practice.

CLINICAL SIGNIFICANCE

AI-based models offer can and clinicians to accurately classify unknown dental implants and enable early detection of peri-implantitis, improving patient outcomes and streamline treatment planning.

摘要

目的

本系统评价旨在总结和评估关于人工智能在二维X线片上进行牙种植体分类和种植体周围病变识别的现有信息。

数据来源

检索电子数据库(Medline、Embase和Cochrane)直至2024年9月,以查找相关观察性研究以及随机对照临床试验。检索限于过去7年以英文发表的研究。两名审阅者独立进行研究选择和数据提取。两名操作者还分别使用质量评估诊断工具(QUADAS-2)进行偏倚风险评估。

研究选择

在识别出的1465条记录中,选择29篇参考文献进行定性分析。研究特征列于自行设计的表格中。QUADAS-2工具确定10项研究偏倚风险高,15项研究偏倚风险不明确,只有4项研究被归类为低偏倚风险。总体而言,牙种植体分类的准确率在67%至99%之间。种植体周围病变识别的结果显示准确率超过78.6%。

结论

虽然基于人工智能的模型,特别是卷积神经网络,在牙种植体分类和种植体周围病变检测中显示出高准确率,但在广泛临床应用之前必须解决一些局限性。应探索更先进的人工智能技术,如联邦学习,以提高这些模型在临床实践中的通用性和效率。

临床意义

基于人工智能的模型可以为临床医生提供帮助,使其能够准确分类未知牙种植体,并能够早期检测种植体周围炎,改善患者预后并简化治疗计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验