Suppr超能文献

内皮窗孔隔膜:一项快速冷冻、深度蚀刻研究。

Endothelial fenestral diaphragms: a quick-freeze, deep-etch study.

作者信息

Bearer E L, Orci L

出版信息

J Cell Biol. 1985 Feb;100(2):418-28. doi: 10.1083/jcb.100.2.418.

Abstract

The route by which water, solutes, and macromolecules traverse the endothelial cell has long been a subject of study for both physiologists and cell biologists. Recent physiologic studies describe a slit-shaped pore (5.1-5.7-nm wide) as the communicating channel, although no channel of such dimensions has been visible in electron microscopic preparations. That this channel should be found within the fenestral diaphragm has long been suggested. In this report, by the aid of a new technique in tissue processing, we are able to demonstrate a possible morphologic correlate within the fenestral diaphragm of fenestrated capillaries. Quick-freezing and deep-etching of whole tissue blocks allows the sublimation of water from the endothelial pores, thus leaving the channels through the diaphragms empty and readily replicated with a platinum-carbon shadow. The structure of the diaphragm was revealed thus to be composed of radial fibrils of 7 nm in diameter, interweaving in a central mesh, and creating by their geometric distribution, wedge-shaped channels around the periphery of the pore. The average channel had a maximum arc length of 5.46 nm. Fenestrated endothelia from various tissues, including endocrine and exocrine pancreas, adrenal cortex, and kidney peritubular capillaries, displayed the same diaphragmatic structure, whereas continuous capillaries in muscle had no such diaphragm. Photographic augmentation of electron micrographs of etched replicas displayed marked enhancement at n = 8, confirming an octagonal symmetry of the fenestral diaphragm. Finally, cationic ferritin, clearly visible as a marker after etching, heavily bound to the flowerlike structure within the fenestral pore. We conclude that the fenestral diaphragm contains the structure responsible for fenestrated capillary permeability and that the communicating channel has the shape of a wedge.

摘要

水、溶质和大分子穿过内皮细胞的途径长期以来一直是生理学家和细胞生物学家的研究课题。最近的生理学研究将一种狭缝状孔隙(宽5.1 - 5.7纳米)描述为连通通道,尽管在电子显微镜标本中尚未见到如此尺寸的通道。长期以来一直有人提出这种通道应该存在于窗孔隔膜内。在本报告中,借助一种新的组织处理技术,我们能够在有孔毛细血管的窗孔隔膜内证明一种可能的形态学关联。对整个组织块进行快速冷冻和深度蚀刻可使水从内皮孔隙升华,从而使穿过隔膜的通道排空,并易于用铂 - 碳阴影进行复制。由此揭示的隔膜结构由直径为7纳米的放射状纤维组成,在中央网中交织,并通过其几何分布在孔隙周边形成楔形通道。平均通道的最大弧长为5.46纳米。来自各种组织的有孔内皮,包括内分泌和外分泌胰腺、肾上腺皮质以及肾周毛细血管,都显示出相同的隔膜结构,而肌肉中的连续毛细血管则没有这种隔膜。蚀刻复制品的电子显微镜照片经照相增强后在n = 8时显示出明显增强,证实了窗孔隔膜的八角对称性。最后,阳离子铁蛋白在蚀刻后作为标记清晰可见,大量结合在窗孔内的花状结构上。我们得出结论,窗孔隔膜包含负责有孔毛细血管通透性的结构,并且连通通道呈楔形。

相似文献

8
An analysis of the permeability of a fenestra.窗孔通透性分析。
Microvasc Res. 1987 Mar;33(2):233-56. doi: 10.1016/0026-2862(87)90020-3.

引用本文的文献

2
Targeted therapeutic strategies for the kidney.针对肾脏的靶向治疗策略。
Expert Opin Ther Targets. 2024 Nov;28(11):979-989. doi: 10.1080/14728222.2024.2421756. Epub 2024 Nov 3.
4
Delivering CRISPR to the HIV-1 reservoirs.将CRISPR技术应用于HIV-1病毒库。
Front Microbiol. 2024 May 15;15:1393974. doi: 10.3389/fmicb.2024.1393974. eCollection 2024.
5
Physiological principles underlying the kidney targeting of renal nanomedicines.肾脏纳米药物靶向肾脏的生理原理。
Nat Rev Nephrol. 2024 Jun;20(6):354-370. doi: 10.1038/s41581-024-00819-z. Epub 2024 Feb 26.
10
The role of PLVAP in endothelial cells.PLVAP 在血管内皮细胞中的作用。
Cell Tissue Res. 2023 May;392(2):393-412. doi: 10.1007/s00441-023-03741-1. Epub 2023 Feb 13.

本文引用的文献

2
The diaphragm of capillary endothelial fenestrations.毛细血管内皮窗孔的隔膜
J Ultrastruct Res. 1962 Apr;6:171-85. doi: 10.1016/s0022-5320(62)90052-7.
3
Passage of molecules through capillary wals.分子通过毛细血管壁的过程。
Physiol Rev. 1953 Jul;33(3):387-423. doi: 10.1152/physrev.1953.33.3.387.
6
Transport pathways in capillaries--in search of pores.毛细血管中的转运途径——探寻孔隙
Annu Rev Physiol. 1980;42:325-36. doi: 10.1146/annurev.ph.42.030180.001545.
10
Cellular aspects of transcapillary exchange.跨毛细血管交换的细胞层面
Physiol Rev. 1983 Oct;63(4):1536-79. doi: 10.1152/physrev.1983.63.4.1536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验