Suppr超能文献

OVsignGenes:一种基于基因表达的神经网络模型,用于估计高级别浆液性卵巢癌的分子亚型。

OVsignGenes: A Gene Expression-Based Neural Network Model Estimated Molecular Subtype of High-Grade Serous Ovarian Carcinoma.

作者信息

Kobelyatskaya Anastasiya, Tregubova Anna, Palicelli Andrea, Badlaeva Alina, Asaturova Aleksandra

机构信息

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.

National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Health of Russia, 117513 Moscow, Russia.

出版信息

Cancers (Basel). 2024 Nov 25;16(23):3951. doi: 10.3390/cancers16233951.

Abstract

BACKGROUND/OBJECTIVES: High-grade serous carcinomas (HGSCs) are highly heterogeneous tumors, both among patients and within a single tumor. Differences in molecular mechanisms significantly describe this heterogeneity. Four molecular subtypes have been previously described by the Cancer Genome Atlas Consortium: differentiated, immunoreactive, mesenchymal, and proliferative. These subtypes may have varying degrees of progression, relapse-free survival, and overall survival, as well as response to therapy. The precise determination of these subtypes is certainly necessary both for diagnosis and future development of targeted therapies within personalized medicine.

METHODS

In this study, we analyzed gene expression data based on bulk RNA-seq, scRNA-seq, and spatial transcriptomic data from six cohorts (totaling 535 samples, including 60 single-cell samples). Differential expression analysis was performed using the edgeR package. The KEGG database and GSVA package were used for pathways enrichment analysis. As a predictive model, a deep neural network was created using the keras and tensorflow libraries.

RESULTS

We identified 357 differentially expressed genes among the four subtypes: 96 differentiated, 33 immunoreactive, 91 mesenchymal, and 137 proliferative. Based on these, we created OVsignGenes, a neural network model resistant to the effects of platform (test dataset AUC = 0.969). We then ran data from five more cohorts through our model, including scRNA-seq and spatial transcriptomics.

CONCLUSIONS

Because the differentiated subtype is located at the intersection of the other three subtypes based on PCA and does not have a unique profile of differentially expressed genes or enriched pathways, it can be considered an initiating subtype of tumor that will develop into one of the three other subtypes.

摘要

背景/目的:高级别浆液性癌(HGSCs)是高度异质性肿瘤,在患者之间以及单个肿瘤内部均如此。分子机制的差异显著地描述了这种异质性。癌症基因组图谱联盟先前已描述了四种分子亚型:分化型、免疫反应型、间充质型和增殖型。这些亚型在进展程度、无复发生存期和总生存期以及对治疗的反应方面可能有所不同。准确确定这些亚型对于个性化医疗中的诊断和靶向治疗的未来发展肯定是必要的。

方法

在本研究中,我们基于来自六个队列(共535个样本,包括60个单细胞样本)的批量RNA测序、单细胞RNA测序和空间转录组数据,分析了基因表达数据。使用edgeR软件包进行差异表达分析。KEGG数据库和GSVA软件包用于通路富集分析。作为预测模型,使用keras和tensorflow库创建了一个深度神经网络。

结果

我们在四种亚型中鉴定出357个差异表达基因:96个分化型、33个免疫反应型、91个间充质型和137个增殖型。基于这些基因,我们创建了OVsignGenes,这是一个对平台效应具有抗性的神经网络模型(测试数据集AUC = 0.969)。然后,我们将另外五个队列的数据,包括单细胞RNA测序和空间转录组数据,通过我们的模型进行分析。

结论

由于基于主成分分析,分化型亚型位于其他三种亚型的交叉点,并且没有独特的差异表达基因谱或富集通路,因此可以认为它是肿瘤的起始亚型,将发展为其他三种亚型之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f40b/11639876/a52e83916267/cancers-16-03951-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验