Suppr超能文献

液体二氧化碳捕获技术:综述

Liquid CO-Capture Technologies: A Review.

作者信息

Zhu Jie, Zhang Haokun, Li Tingting, Deng Tingting, Zou Hao, Li Yongqi, Yang Dingyu

机构信息

College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

School of Mechanical Engineering, Chengdu University, Chengdu 610106, China.

出版信息

Nanomaterials (Basel). 2024 Nov 28;14(23):1910. doi: 10.3390/nano14231910.

Abstract

Escalating global carbon dioxide (CO) emissions have significantly exacerbated the climate impact, necessitating imperative advancements in CO-capture technology. Liquid absorbents have received considerable attention in carbon capture for engineering applications, due to their high flexibility, reliability, and recyclability. Nonetheless, the existing technologies of liquid CO capture suffer from various issues that cannot be ignored, such as corrosion, elevated costs, and pronounced secondary pollution. More efforts are required to realize process optimization and novel absorbent innovation. This review presents nanofluids and other novel liquid absorbents such as ionic liquids, amino acids, and phase-change absorbents. The preparation, mechanisms of action, and influencing factors of nanofluid absorbents are discussed in detail to provide researchers with a comprehensive understanding of their potential applications. Further, the challenges (including energy loss, environmental and human health, barriers to application and capture performance, etc.) encountered by these innovative absorbents and techniques are also commented on. This facilitates side-by-side comparisons by researchers.

摘要

全球二氧化碳(CO)排放量不断攀升,已显著加剧了气候影响,这使得二氧化碳捕获技术必须取得迫切进展。液体吸收剂因其高灵活性、可靠性和可回收性,在工程应用的碳捕获中受到了广泛关注。尽管如此,现有的液体二氧化碳捕获技术存在各种不容忽视的问题,如腐蚀、成本上升和严重的二次污染。需要付出更多努力来实现工艺优化和新型吸收剂创新。本综述介绍了纳米流体以及其他新型液体吸收剂,如离子液体、氨基酸和相变吸收剂。详细讨论了纳米流体吸收剂的制备、作用机制和影响因素,以便为研究人员提供对其潜在应用的全面理解。此外,还对这些创新吸收剂和技术所面临的挑战(包括能量损失、环境和人类健康、应用障碍和捕获性能等)进行了评论。这有助于研究人员进行并行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5289/11643708/21cfea8c20cf/nanomaterials-14-01910-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验