Suppr超能文献

基于电视的处理系统对宫颈细胞进行结构分析与分类

Structure analysis and classification of cervical cells using a processing system based on TV.

作者信息

Reinhardt E R, Erhardt R, Schwarzmann P, Bloss W H, Ott R

出版信息

Anal Quant Cytol. 1979 Jul-Aug;1(2):143-50.

PMID:396836
Abstract

This paper presents preliminary results of a cell classification experiment using a new approach for feature extraction. The algorithm takes into account the special requirements of a fast parallel processing system (processor-oriented algorithms). A cell image is described by several hundred features derived from the nucleus only. The most significant features with respect to classification are determined by statistical analysis. Applying principal axis transform, a new feature set is computed, reduced considerably in dimensions. The data base (1,925 cell images of Papanicolaou-stained cervical specimens) was divided into a training set (963 images) and a test set (962 images). The classification results of the test set show that the recognition rate for the two-class problem (normal, suspicious) is better than 91%, using only ten morphologic features.

摘要

本文展示了一项使用新特征提取方法进行细胞分类实验的初步结果。该算法考虑了快速并行处理系统(面向处理器的算法)的特殊要求。一个细胞图像仅由从细胞核得出的数百个特征来描述。通过统计分析确定了与分类最相关的特征。应用主轴变换,计算出一个新的特征集,其维度大幅降低。数据库(1925张巴氏染色宫颈标本的细胞图像)被分为一个训练集(963张图像)和一个测试集(962张图像)。测试集的分类结果表明,对于两类问题(正常、可疑),仅使用十个形态学特征时,识别率优于91%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验