Xu Yaohui, Zhou Yang, Li Yuting, Ashuri Maziar, Ding Zhao
Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China.
Leshan West Silicon Materials Photovoltaic New Energy Industry Technology Research Institute, Leshan 614000, China.
Molecules. 2024 Dec 6;29(23):5774. doi: 10.3390/molecules29235774.
Lithium borohydride (LiBH) has emerged as a promising hydrogen storage material due to its exceptional theoretical hydrogen capacity (18.5 wt.%). However, its practical application is hindered by high dehydrogenation temperature (>400 °C), sluggish kinetics, and limited reversibility due to stable intermediate formation. This review critically analyzes recent advances in LiBH modification through three primary strategies: catalytic enhancement, nanostructure engineering, and reactive composite design. Advanced carbon architectures and metal oxide catalysts demonstrate significant improvements in reaction kinetics and cycling stability through interface engineering and electronic modification. Sophisticated nanostructuring approaches, including mechanochemical processing and infiltration techniques, enable precise control over material architecture and phase distribution, effectively modifying thermodynamic and kinetic properties. The development of reactive hydride composites, particularly LiBH-MgH systems, provides promising pathways for thermodynamic destabilization while maintaining high capacity. Despite these advances, challenges persist in maintaining engineered structures and suppressing intermediate phases during cycling. Future developments require integrated approaches combining multiple modification strategies while addressing practical implementation requirements.
硼氢化锂(LiBH)因其出色的理论储氢容量(18.5重量%)而成为一种很有前景的储氢材料。然而,其实际应用受到脱氢温度高(>400°C)、动力学缓慢以及由于形成稳定中间体而导致的可逆性有限的阻碍。本综述批判性地分析了通过三种主要策略对LiBH进行改性的最新进展:催化增强、纳米结构工程和反应性复合材料设计。先进的碳结构和金属氧化物催化剂通过界面工程和电子改性在反应动力学和循环稳定性方面有显著改善。复杂的纳米结构化方法,包括机械化学处理和渗透技术,能够精确控制材料结构和相分布,有效改变热力学和动力学性质。反应性氢化物复合材料的开发,特别是LiBH-MgH体系,为热力学不稳定同时保持高容量提供了有前景的途径。尽管有这些进展,但在循环过程中维持工程结构和抑制中间相方面仍存在挑战。未来的发展需要结合多种改性策略的综合方法,同时满足实际应用要求。