Valades-Aguilar Bruno Alejandro, Rivera-González Teodoro Iván, Rangel-López Raúl, Luna-Barcenas Gabriel, Franco-Molina Moisés Ármides, Rodriguez-Padilla Cristina, Zárate-Triviño Diana Ginette
Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico.
School of Engineering and Sciences, The Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Querétaro 76130, QRO, Mexico.
Polymers (Basel). 2024 Nov 30;16(23):3390. doi: 10.3390/polym16233390.
The deproteinization of chitosan is a necessary purification process for materials with biomedical purposes; however, chitosan sourcing and purification methods can modify its molecular weight, deacetylation degree, and residual proteins. These factors affect the reactive groups that affect the immunomodulatory activities of cells, particularly macrophages and monocytes; considering this activity is key when developing successful and functional biomaterials. Here, two brands of chitosan were purified and used to synthesize nanoparticles to evaluate their immunomodulatory effect on monocyte and macrophage differentiation. Chitosan FT-IR showed bands related to its purification process, with increased OH group intensity. Nanoparticles (CtsNps) synthesized with purified chitosan were of a smaller size compared to those using unpurified chitosan due to the alkaline purification process's shortening of the polymeric chain. At low concentrations (50 μg/mL), CtsNps showed a lower expression of CD80 and CD14, corroborating the differentiation effect of chitosan. Inducible nitric oxide synthase (iNOS) is related to a pro-inflammatory response and M1 macrophage polarization was detected in monocytes treated with purified and unpurified nanoparticles. Sigma-purified chitosan nanoparticles (CtsNps SigmaP), at 300 μg/mL, showed arginase production related to an anti-inflammatory response and M2 macrophage polarization. The chitosan purification process induces a shift in the polarization of macrophages to an anti-inflammatory M2 profile. This effect is concentration-dependent and should be further studied in each use case to favor the suitable biological response.
壳聚糖的脱蛋白是用于生物医学目的材料的必要纯化过程;然而,壳聚糖的来源和纯化方法会改变其分子量、脱乙酰度和残留蛋白质。这些因素会影响影响细胞免疫调节活性的反应基团,特别是巨噬细胞和单核细胞;考虑到这种活性在开发成功且功能性生物材料时至关重要。在这里,对两个品牌的壳聚糖进行了纯化,并用于合成纳米颗粒,以评估它们对单核细胞和巨噬细胞分化的免疫调节作用。壳聚糖的傅里叶变换红外光谱(FT-IR)显示出与其纯化过程相关的谱带,其中OH基团强度增加。与使用未纯化壳聚糖合成的纳米颗粒相比,用纯化壳聚糖合成的纳米颗粒(CtsNps)尺寸更小,这是由于碱性纯化过程缩短了聚合物链。在低浓度(50μg/mL)下,CtsNps显示CD80和CD14的表达较低,证实了壳聚糖的分化作用。诱导型一氧化氮合酶(iNOS)与促炎反应相关,在用纯化和未纯化纳米颗粒处理的单核细胞中检测到M1巨噬细胞极化。Sigma纯化的壳聚糖纳米颗粒(CtsNps SigmaP)在300μg/mL时显示出与抗炎反应和M2巨噬细胞极化相关的精氨酸酶产生。壳聚糖纯化过程会诱导巨噬细胞极化转变为抗炎性M2型。这种效应是浓度依赖性的,应在每个应用案例中进一步研究,以促进合适的生物学反应。