Suppr超能文献

放电等离子烧结制备碳化钨增强铁基复合材料:耐磨性能及机理

Spark Plasma Sintering Preparation of Tungsten Carbide-Reinforced Iron-Based Composite Materials: Wear Resistance Performance and Mechanism.

作者信息

Zeng Xiaoyi, Wang Renquan, Liu Ying

机构信息

School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China.

Sichuan Provincial for Rare Earth & Vanadium-Titanium Based Functional Materials, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China.

出版信息

Materials (Basel). 2024 Nov 29;17(23):5856. doi: 10.3390/ma17235856.

Abstract

The spark plasma sintering (SPS) process was used to create iron-based composites reinforced with tungsten carbide (WC) particles of various morphologies, and the effect of WC particle morphology on material wear resistance was systematically investigated. The experiment revealed that the addition of non-spherical WC (CTC-A) significantly altered the composites' friction coefficient, wear morphology, and wear mechanism. As the CTC-A content increased, the composites' wear rate decreased at first, then increased, and then decreased again. Composites with a CTC-A concentration of 10% had a minimum wear rate of 2.7 × 10 mm/(N·m) and peaked at 20%. SEM analysis indicated that the wear mechanism gradually changed from initial oxidative wear to abrasive wear as the CTC-A content increased, and the wear morphology transitioned from smooth to rough with the appearance of numerous abrasives and cracks. The study demonstrated that the low content of non-spherical WC particles during sintering significantly increased the hardness of the matrix by forming carbide phases, while a high content led to increased surface roughness, inducing abrasive wear and reducing wear performance. These findings provide a significant theoretical basis and practical guidance for optimizing the design of iron-based composites.

摘要

采用放电等离子烧结(SPS)工艺制备了含有不同形貌碳化钨(WC)颗粒增强的铁基复合材料,并系统研究了WC颗粒形貌对材料耐磨性的影响。实验表明,添加非球形WC(CTC-A)显著改变了复合材料的摩擦系数、磨损形貌和磨损机制。随着CTC-A含量的增加,复合材料的磨损率先降低,然后升高,随后又降低。CTC-A浓度为10%的复合材料磨损率最低,为2.7×10⁻⁶mm/(N·m),在20%时达到峰值。扫描电子显微镜(SEM)分析表明,随着CTC-A含量的增加,磨损机制逐渐从初始氧化磨损转变为磨粒磨损,磨损形貌从光滑转变为粗糙,出现大量磨粒和裂纹。研究表明,烧结过程中非球形WC颗粒含量较低时,通过形成碳化物相显著提高了基体硬度,而含量较高时则导致表面粗糙度增加,引发磨粒磨损并降低磨损性能。这些研究结果为优化铁基复合材料的设计提供了重要的理论依据和实际指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a880/11642383/c1b5601e7679/materials-17-05856-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验