Suppr超能文献

基于八面体桁架和四面体拓扑结构的细胞生物材料的粘弹性行为

Viscoelastic Behavior of Cellular Biomaterials Based on Octet-Truss and Tetrahedron Topologies.

作者信息

Hedayati Reza, Shokrnia Mohammad, Alavi Melikasadat, Sadighi Mojtaba, Aghdam Mohammad Mohammadi

机构信息

Aerospace Materials and Structures Department, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands.

Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 15916-34311, Iran.

出版信息

Materials (Basel). 2024 Nov 29;17(23):5865. doi: 10.3390/ma17235865.

Abstract

Cellular biomaterials offer unique properties for diverse biomedical applications. However, their complex viscoelastic behavior requires careful consideration for design optimization. This study explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and octet-truss) suitable for high porosity and strong mechanics. The asymptotic homogenization (AH) method was employed to determine effective longitudinal and shear moduli, as well as Poisson's ratio, across various relative densities. Finite element simulations (ABAQUS) validated the AH results, demonstrating good agreement (<10% discrepancies). Additionally, analytical models and compression tests on 3D-printed lattice structures supported the theoretical predictions. The study revealed a strong correlation between relative density and the effective modulus of both designs. Notably, the tetrahedron-based design exhibited superior modulus, making it favorable for high loading levels, particularly when used as a high-density configuration. Both designs demonstrated minimal time-dependent elastic modulus changes and a near-constant Poisson's ratio (0.34-0.349 for octet-truss, 0.316-0.326 for tetrahedron) across a 5-50% relative density range. While minimal, time-dependent modulus reduction needs to be considered in longer-term simulations (t>107 s). This study provides valuable insights into the viscoelastic behavior of these unit cells using the homogenization method, with potential applications in various biomedical fields.

摘要

细胞生物材料为各种生物医学应用提供了独特的性能。然而,它们复杂的粘弹性行为需要在设计优化时仔细考虑。本研究探讨了两种适用于高孔隙率和强力学性能的有前景的单胞设计(基于四面体的和八面体桁架)的有效粘弹性响应。采用渐近均匀化(AH)方法来确定不同相对密度下的有效纵向和剪切模量以及泊松比。有限元模拟(ABAQUS)验证了AH结果,显示出良好的一致性(差异<10%)。此外,对3D打印晶格结构的解析模型和压缩测试支持了理论预测。该研究揭示了相对密度与两种设计的有效模量之间存在很强的相关性。值得注意的是,基于四面体的设计表现出更高的模量,使其有利于承受高载荷水平,特别是当用作高密度结构时。在5 - 50%的相对密度范围内,两种设计都显示出随时间变化的弹性模量变化极小,且泊松比近乎恒定(八面体桁架为0.34 - 0.349,四面体为0.316 - 0.326)。虽然变化极小,但在长期模拟(t>107 s)中仍需考虑随时间变化的模量降低。本研究使用均匀化方法为这些单胞的粘弹性行为提供了有价值的见解,在各种生物医学领域具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d782/11643608/742f31f3c6c8/materials-17-05865-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验