Senthilkumar Vagheesan, Nagadeepan Anbazhagan, Ilavenil K K
Department of Mechanical Engineering, SRM TRP Engineering College, Trichy 621105, Tamilnadu, India.
Department of Chemistry, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Trichy 621112, Tamilnadu, India.
Materials (Basel). 2024 Dec 1;17(23):5894. doi: 10.3390/ma17235894.
This study aims to optimize the Wire Electrical Discharge Machining (EDM) process parameters for aluminum 6061 alloy reinforced with Mg and MoS using the Box-Behnken (BBD) design and the non-dominated sorting genetic (NSGA-II) algorithm. The objective is to enhance the machining efficiency and quality of the composite material. The Box-Behnken (BBD) design was utilized to design a set of experiments with varying levels of process parameters, comprising pulse-on time, servo volt, and current. The material removal rate and surface roughness were considered as machining responses for optimization. These responses were measured and used to develop a mathematical model. The NSGA-II, a multi-objective optimization algorithm, was then applied to search for the optimal combination of process parameters that simultaneously maximizes the material removal rate and minimizes the electrode wear rate and surface roughness. The algorithm generated and evolved a set of Pareto-optimal solutions, providing a trade-off between conflicting objectives. The results of the optimization process were analyzed to identify the optimal process parameters that lead to improved machining performance. The study revealed optimal Wire Electrical Discharge Machining (WEDM) parameters for Al6061/Mg/MoS composites using NSGA-II. The optimized parameters, including a pulse-on time (Ton) of 105 µs, servo voltage (SV) of 35 V, and peak current (PC) of 31 A, resulted in a Material Removal Rate (MRR) of 7.51 mm/min and a surface roughness (SR) of 1.97 µm. This represents a 15% improvement in the MRR and a 20% reduction in the SR compared to non-optimized settings, demonstrating the efficiency of the BBD-NSGA-II approach.
本研究旨在使用Box-Behnken(BBD)设计和非支配排序遗传(NSGA-II)算法优化用镁和二硫化钼增强的6061铝合金的电火花线切割加工(EDM)工艺参数。目的是提高复合材料的加工效率和质量。利用Box-Behnken(BBD)设计来设计一组具有不同工艺参数水平的实验,这些参数包括脉冲导通时间、伺服电压和电流。材料去除率和表面粗糙度被视为用于优化的加工响应。测量这些响应并用于建立数学模型。然后应用多目标优化算法NSGA-II来搜索工艺参数的最佳组合,该组合能同时使材料去除率最大化,并使电极磨损率和表面粗糙度最小化。该算法生成并进化出一组帕累托最优解,在相互冲突的目标之间提供了一种权衡。分析优化过程的结果以确定能提高加工性能的最佳工艺参数。该研究揭示了使用NSGA-II的Al6061/Mg/MoS复合材料的最佳电火花线切割加工(WEDM)参数。优化后的参数包括脉冲导通时间(Ton)为105微秒、伺服电压(SV)为35伏和峰值电流(PC)为31安,其材料去除率(MRR)为7.51毫米/分钟,表面粗糙度(SR)为1.97微米。与未优化的设置相比,这代表着材料去除率提高了15%,表面粗糙度降低了20%,证明了BBD-NSGA-II方法的有效性。