Guzmán Neftalí, Letelier Pablo, Morales Camilo, Alarcón Luis, Delgado Hugo, San Martín Andrés, Garcés Paola, Barahona Claudia, Huenchulao Pedro, Morales Felipe, Rojas Eduardo, Guzmán-Oyarzo Dina, Boguen Rodrigo
Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, Temuco 4780000, Chile.
Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile.
J Clin Med. 2024 Nov 30;13(23):7300. doi: 10.3390/jcm13237300.
Various tools have been proposed for predicting mortality among patients hospitalized with COVID-19 to improve clinical decision-making, the predictive capacities of which vary in different populations. The objective of this study was to develop a model for predicting mortality among patients hospitalized with COVID-19 during their time in a clinical centre. This was a retrospective study that included 201 patients hospitalized with COVID-19. Mortality was evaluated with the Kaplan-Meier curve and Cox proportional hazards models. Six models were generated for predicting mortality from laboratory markers and patients' epidemiological data during their stay in a clinical centre. The model that presented the best predictive power used D-dimer adjusted for C-reactive protein (CRP) and oxygen saturation. The sensitivity (Sn) and specificity (Sp) at 15 days were 75% and 71.9%, respectively. At 30 days, Sn was 75% and Sp was 75.4%. These results allowed us to establish a model for predicting mortality among patients hospitalized with COVID-19 based on D-dimer laboratory biomarkers adjusted for CRP and oxygen saturation. This mortality predictor will allow patients to be identified who require more continuous monitoring and health care.
已经提出了各种工具来预测新冠病毒疾病(COVID-19)住院患者的死亡率,以改善临床决策,其中不同工具在不同人群中的预测能力有所不同。本研究的目的是建立一个模型,用于预测COVID-19住院患者在临床中心期间的死亡率。这是一项回顾性研究,纳入了201例COVID-19住院患者。采用Kaplan-Meier曲线和Cox比例风险模型评估死亡率。根据实验室指标和患者在临床中心停留期间的流行病学数据,生成了六个预测死亡率的模型。预测能力最佳的模型使用了经C反应蛋白(CRP)和血氧饱和度调整后的D-二聚体。第15天的灵敏度(Sn)和特异度(Sp)分别为75%和71.9%。第30天时,Sn为75%,Sp为75.4%。这些结果使我们能够基于经CRP和血氧饱和度调整后的D-二聚体实验室生物标志物,建立一个预测COVID-19住院患者死亡率的模型。这种死亡率预测指标将有助于识别需要更持续监测和医疗护理的患者。