Kelly John T, Koch Christopher J, Lascola Robert, Guin Tyler
Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA.
Sensors (Basel). 2024 Nov 25;24(23):7501. doi: 10.3390/s24237501.
An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities. Notably, the modularity of the approach empowers customization for diverse gas monitoring needs, as it readily adapts to the specific requirements of various sensing scenarios. As a proof of concept, the efficacy of a spectroscopic approach is shown by monitoring two catalytic processes: CO methanation (CO + 4H → CH + 2HO) and ammonia cracking (2NH → N + 3H). Leveraging chemometric data processing techniques, spectral signatures of the individual components involved in these reactions are effectively disentangled and the results are compared to mass spectrometry data. This robust methodology underscores the versatility and reliability of this monitoring system in complex chemical environments.
本文提出了一种创新解决方案,用于实时监测密闭空间内的反应,该方案针对拉曼光谱应用进行了优化。这种方法涉及利用配置为紧凑型流通池的空心波导,它既作为拉曼激发和散射的管道,又无缝集成到裂化催化反应器的流出物流中。该分析技术包括设备和光学设计,确保了在过程设施中实施时的稳健性、紧凑性和成本效益。值得注意的是,该方法的模块化使其能够针对各种气体监测需求进行定制,因为它很容易适应各种传感场景的特定要求。作为概念验证,通过监测两个催化过程展示了光谱方法的有效性:一氧化碳甲烷化(CO + 4H → CH + 2HO)和氨裂解(2NH → N + 3H)。利用化学计量学数据处理技术,有效解析了这些反应中各个组分的光谱特征,并将结果与质谱数据进行了比较。这种稳健的方法强调了该监测系统在复杂化学环境中的多功能性和可靠性。