Jiang Xinbei, Zhu Zichen, Gao Tianhan, Guo Nan
Software College, Northeastern University, Shenyang 110004, China.
School of Computer Science and Engineering, Northeastern University, Shenyang 110004, China.
Sensors (Basel). 2024 Nov 27;24(23):7584. doi: 10.3390/s24237584.
Transparent objects, commonly encountered in everyday environments, present significant challenges for 6D pose estimation due to their unique optical properties. The lack of inherent texture and color complicates traditional vision methods, while the transparency prevents depth sensors from accurately capturing geometric details. We propose EBFA-6D, a novel end-to-end 6D pose estimation framework that directly predicts the 6D poses of transparent objects from a single RGB image. To overcome the challenges introduced by transparency, we leverage the high contrast at object boundaries inherent to transparent objects by proposing a boundary feature augmented mechanism. We further conduct a bottom-up feature fusion to enhance the location capability of EBFA-6D. EBFA-6D is evaluated on the ClearPose dataset, outperforming the existing methods in accuracy while achieving an inference speed near real-time. The results demonstrate that EBFA-6D provides an efficient and effective solution for accurate 6D pose estimation of transparent objects.
透明物体在日常环境中很常见,由于其独特的光学特性,给6D姿态估计带来了重大挑战。缺乏固有的纹理和颜色使传统视觉方法变得复杂,而透明度则阻止深度传感器准确捕捉几何细节。我们提出了EBFA-6D,这是一种新颖的端到端6D姿态估计框架,它可以直接从单张RGB图像预测透明物体的6D姿态。为了克服透明度带来的挑战,我们通过提出一种边界特征增强机制,利用透明物体固有的物体边界处的高对比度。我们进一步进行自底向上的特征融合,以增强EBFA-6D的定位能力。EBFA-6D在ClearPose数据集上进行了评估,在精度上优于现有方法,同时实现了接近实时的推理速度。结果表明,EBFA-6D为透明物体的精确6D姿态估计提供了一种高效且有效的解决方案。