Jiang Zhiyong, Wang Yu, Wang Siyu, Bi Sheng, Chen Jiangcheng
Robotics Engineering Center, The 21st Research Institute, China Electronics Technology Group Corporation, Shanghai 200233, China.
Shenzhen Academy of Robotics, Shenzhen 518057, China.
Sensors (Basel). 2024 Nov 29;24(23):7652. doi: 10.3390/s24237652.
Humanoid robots are typically designed for static environments, but real-world applications demand robust performance under dynamic, uncertain conditions. This paper introduces a perceptive motion planning and control algorithm that enables humanoid robots to navigate and operate effectively in environments with unpredictable kinematic and dynamic disturbances. The proposed algorithm ensures synchronized multi-limb motion while maintaining dynamic balance, utilizing real-time feedback from force, torque, and inertia sensors. Experimental results demonstrate the algorithm's adaptability and robustness in handling complex tasks, including walking on uneven terrain and responding to external disturbances. These findings highlight the potential of perceptive motion planning in enhancing the versatility and resilience of humanoid robots in uncertain environments. The results have potential applications in search-and-rescue missions, healthcare robotics, and industrial automation, where robots operate in unpredictable or dynamic conditions.
人形机器人通常是为静态环境设计的,但实际应用需要在动态、不确定条件下具备强大的性能。本文介绍了一种感知运动规划与控制算法,该算法能使人形机器人在存在不可预测的运动学和动力学干扰的环境中有效导航和操作。所提出的算法利用来自力、扭矩和惯性传感器的实时反馈,确保多肢体运动同步的同时保持动态平衡。实验结果证明了该算法在处理复杂任务(包括在不平坦地形上行走和应对外部干扰)时的适应性和鲁棒性。这些发现突出了感知运动规划在增强人形机器人在不确定环境中的通用性和适应性方面的潜力。研究结果在搜索救援任务、医疗机器人和工业自动化等领域具有潜在应用,这些领域中的机器人在不可预测或动态条件下运行。