Karapateas Louis, Lai Yufeng, Meng Xiangfei, Zhang Yang, Willmott Jon R, Hobbs Matthew J
Sensor Systems Group, School of Electrical & Electronic Engineering, The University of Sheffield, Portobello Centre, Pitt Street, Sheffield S1 4ET, UK.
School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sir Frederick Mappin Building, Sheffield S1 3JD, UK.
Sensors (Basel). 2024 Dec 5;24(23):7780. doi: 10.3390/s24237780.
This study introduces a novel approach to analysing the combustion process using a high-speed, non-contact, optical fibre-coupled Si avalanche photodiode (APD)-based infrared radiation thermometer (IRT). The Si APD-IRT, combined with an optimised field-programmable gate array (FPGA)-based digital design, achieves a response time of 1 µs, faster than commercially available instruments. Our instrument captures the entire ignition and reignition cycle of a Jet A kerosene droplet with high temporal precision within a combustion chamber, a feat impossible with traditional thermocouples. The FPGA module was validated with a 1 µs data acquisition time, using a 40 MHz onboard clock, achieving throughput of 0.64 Gbps with efficiencies of 0.062 Mbps/slice in lookup tables (LUTs), confirming a low-area design compared to conventional FPGAs. The IRT achieves a root mean square (RMS) noise specification of 0.5 °C at a 1 µs acquisition time and a target temperature of approximately 1000 °C. A measurement uncertainty of within ±0.25% °C + 2 °C confirms that it lies within the bounds of commercial instrumentations. Our instrument was demonstrated to capture transient temperature fluctuations during combustion and characterises Jet A kerosene fuel droplets, laying the foundation for understanding sustainable aviation fuels (SAFs) and their role in transitioning from aviation fossil fuels, enabling effective research and development.
本研究介绍了一种新颖的方法,该方法使用基于高速、非接触、光纤耦合硅雪崩光电二极管(APD)的红外辐射温度计(IRT)来分析燃烧过程。结合优化的基于现场可编程门阵列(FPGA)的数字设计的硅APD-IRT,实现了1微秒的响应时间,比市售仪器更快。我们的仪器在燃烧室内以高时间精度捕捉了喷气A煤油液滴的整个点火和再点火周期,这是传统热电偶无法做到的壮举。使用40 MHz板载时钟,以1微秒的数据采集时间对FPGA模块进行了验证,查找表(LUT)中的效率为0.062 Mbps/切片,实现了0.64 Gbps的吞吐量,与传统FPGA相比,证实了其低面积设计。IRT在1微秒采集时间和目标温度约为1000°C时,实现了0.5°C的均方根(RMS)噪声规格。±0.25%°C + 2°C的测量不确定度证实其在商业仪器的范围内。我们的仪器被证明能够捕捉燃烧过程中的瞬态温度波动,并对喷气A煤油燃料液滴进行表征,为理解可持续航空燃料(SAF)及其在从航空化石燃料过渡中的作用奠定了基础,从而推动有效的研发工作。