Liang Shuang, Bai Xue, Gu Yu
School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
Sensors (Basel). 2024 Dec 7;24(23):7822. doi: 10.3390/s24237822.
Cancer is the second leading cause of death, significantly threatening human health. Effective treatment options are often lacking in advanced stages, making early diagnosis crucial for reducing mortality rates. Circulating tumor cells (CTCs) are a promising biomarker for early detection; however, their automatic detection is challenging due to their heterogeneous size and shape, as well as their scarcity in blood. This study proposes a data generation method using the Segment Anything Model (SAM) combined with a copy-paste strategy. We develop a detection network based on the Swin Transformer, featuring a backbone network, scale adapter module, shape adapter module, and detection head, which enhances CTC localization and identification in images. To effectively utilize both generated and real data, we introduce an improved loss function that includes a regularization term to ensure consistency across different data distributions. Our model demonstrates exceptional performance across five evaluation metrics: accuracy (0.9960), recall (0.9961), precision (0.9804), specificity (0.9975), and mean average precision () of 0.9400 at an Intersection over Union (IoU) threshold of 0.5. These results are achieved on a dataset generated by mixing both public and local data, highlighting the robustness and generalizability of the proposed approach. This framework surpasses state-of-the-art models (ADCTC, DiffusionDet, CO-DETR, and DDQ), providing a vital tool for early cancer diagnosis, treatment planning, and prognostic assessment, ultimately enhancing human health and well-being.
癌症是第二大致死原因,严重威胁人类健康。晚期通常缺乏有效的治疗选择,因此早期诊断对于降低死亡率至关重要。循环肿瘤细胞(CTC)是早期检测的一种有前景的生物标志物;然而,由于其大小和形状的异质性以及在血液中的稀缺性,对其进行自动检测具有挑战性。本研究提出了一种使用分割一切模型(SAM)结合复制粘贴策略的数据生成方法。我们基于Swin Transformer开发了一个检测网络,该网络具有骨干网络、尺度适配器模块、形状适配器模块和检测头,可增强图像中CTC的定位和识别。为了有效利用生成的数据和真实数据,我们引入了一种改进的损失函数,其中包括一个正则化项,以确保不同数据分布之间的一致性。我们的模型在五个评估指标上表现出色:准确率(0.9960)、召回率(0.9961)、精确率(0.9804)、特异性(0.9975),在交并比(IoU)阈值为0.5时的平均精度均值(mAP)为0.9400。这些结果是在混合公共数据和本地数据生成的数据集上取得的,突出了所提出方法的稳健性和通用性。该框架超越了现有最先进的模型(ADCTC、DiffusionDet、CO-DETR和DDQ),为早期癌症诊断、治疗规划和预后评估提供了一个重要工具,最终增进人类健康和福祉。