Gaudet Logan A, Rybka Lena, Mandonnet Emmanuel, Volle Emmanuelle, Barberis Marion, Jonkers Roel, Rofes Adrià
Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands.
Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands.
J Neuropsychol. 2025 Jun;19(2):299-337. doi: 10.1111/jnp.12405. Epub 2024 Dec 16.
Understanding lexico-semantic processing is crucial for dissecting the complexities of language and its disorders. Relatedness-based measures, or those which investigate the degree of relatedness in meaning between either task items or items produced by participants, offer the opportunity to harness novel computational and analytical techniques from cognitive network science. Recognizing the need to deepen our understanding of lexico-semantic deficits through diverse experimental and analytical approaches, this review explores the use of such measures in research into language disorders. A comprehensive search of four electronic databases covering publications from the last 11 years (October 2013-September 2024) identified 38 original experimental studies employing relatedness-based measures in populations with language disorders or other neurological conditions. Articles were examined for the types of tasks used, populations studied, item selection methods and analytical approaches. The predominant use of category fluency tasks emerged across studies, with a notable absence of relatedness judgement tasks or comparable paradigms. Commonly discussed populations included individuals with post-stroke aphasia, mild cognitive impairment and schizophrenia. Analytical methods varied significantly, ranging from more traditional approaches of clustering and switching to more sophisticated computational techniques. Despite the evident utility of category fluency tasks in research and clinical settings, the review underscores a critical need to diversify experimental paradigms and probe lexico-semantic processing in a more multifaceted manner. A broadened approach in future language disorder research should incorporate innovative analytical techniques, investigations of neural correlates and a wider array of tasks employing relatedness-based measures already present in healthy populations.
理解词汇语义处理对于剖析语言及其障碍的复杂性至关重要。基于相关性的测量方法,即那些研究任务项目之间或参与者生成的项目之间意义相关程度的方法,为利用认知网络科学中的新型计算和分析技术提供了机会。认识到需要通过多样化的实验和分析方法加深我们对词汇语义缺陷的理解,本综述探讨了这些测量方法在语言障碍研究中的应用。对四个电子数据库进行全面检索,涵盖过去11年(2013年10月至2024年9月)的出版物,共识别出38项原始实验研究,这些研究在患有语言障碍或其他神经疾病的人群中采用了基于相关性的测量方法。对文章进行了检查,以了解所使用的任务类型、研究人群、项目选择方法和分析方法。跨研究中出现了对类别流畅性任务的主要使用,而相关性判断任务或类似范式明显缺失。常见讨论的人群包括中风后失语症、轻度认知障碍和精神分裂症患者。分析方法差异很大,从更传统的聚类和转换方法到更复杂的计算技术。尽管类别流畅性任务在研究和临床环境中具有明显的实用性,但该综述强调迫切需要使实验范式多样化,并以更全面的方式探究词汇语义处理。未来语言障碍研究的更广泛方法应纳入创新的分析技术、神经相关性研究以及一系列更广泛的任务,这些任务采用健康人群中已有的基于相关性的测量方法。