Sun Dayu, Zhang Kunyu, Zheng Feiyang, Yang Guanyuan, Yang Mingcan, Xu Youqian, Qin Yinhua, Lin Mingxin, Li Yanzhao, Tan Ju, Li Qiyu, Qu Xiaohang, Li Gang, Bian Liming, Zhu Chuhong
Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China.
State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China.
Adv Mater. 2025 Feb;37(5):e2410802. doi: 10.1002/adma.202410802. Epub 2024 Dec 17.
Stem cell-derived blood vessel organoids are embedded in extracellular matrices to stimulate vessel sprouting. Although vascular organoids in 3D collagen I-Matrigel gels are currently available, they are primarily capillaries composed of endothelial cells (ECs), pericytes, and mesenchymal stem-like cells, which necessitate mature arteriole differentiation for neovascularization. In this context, the hypothesis that matrix viscoelasticity regulates vascular development is investigated in 3D cultures by encapsulating blood vessel organoids within viscoelastic gelatin/β-CD assembly dynamic hydrogels or methacryloyl gelatin non-dynamic hydrogels. The vascular organoids within the dynamic hydrogel demonstrate enhanced angiogenesis and differentiation into arterioles containing smooth muscle cells. The dynamic hydrogel mechanical microenvironment promotes vascular patterning and arteriolar differentiation by elevating notch receptor 3 signaling in mesenchymal stem cells and downregulating platelet-derived growth factor B expression in ECs. Transplantation of vascular organoids in vivo, along with the dynamic hydrogel, leads to the reassembly of arterioles and restoration of cardiac function in infarcted hearts. These findings indicate that the viscoelastic properties of the matrix play a crucial role in controlling the vascular organization and differentiation processes, suggesting an exciting potential for its application in regenerative medicine.
干细胞衍生的血管类器官被嵌入细胞外基质中以刺激血管生成。尽管目前已有三维I型胶原蛋白-基质胶凝胶中的血管类器官,但它们主要是由内皮细胞、周细胞和间充质干细胞样细胞组成的毛细血管,而新血管形成需要成熟小动脉分化。在此背景下,通过将血管类器官封装在粘弹性明胶/β-环糊精组装动态水凝胶或甲基丙烯酰明胶非动态水凝胶中,在三维培养中研究了基质粘弹性调节血管发育的假说。动态水凝胶中的血管类器官表现出增强的血管生成以及向含有平滑肌细胞的小动脉分化。动态水凝胶的机械微环境通过提高间充质干细胞中的Notch受体3信号传导和下调内皮细胞中血小板衍生生长因子B的表达来促进血管模式形成和小动脉分化。在体内将血管类器官与动态水凝胶一起移植,可导致小动脉重新组装并恢复梗死心脏的心脏功能。这些发现表明,基质的粘弹性在控制血管组织和分化过程中起着关键作用,这为其在再生医学中的应用暗示了令人兴奋的潜力。