Arriagada-Bruneau Gabriela, López Claudia, Davidoff Alexandra
Instituto de Éticas Aplicadas, Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile.
Sci Eng Ethics. 2024 Dec 17;31(1):1. doi: 10.1007/s11948-024-00526-9.
We introduce the Bias Network Approach (BNA) as a sociotechnical method for AI developers to identify, map, and relate biases across the AI development process. This approach addresses the limitations of what we call the "isolationist approach to AI bias," a trend in AI literature where biases are seen as separate occurrences linked to specific stages in an AI pipeline. Dealing with these multiple biases can trigger a sense of excessive overload in managing each potential bias individually or promote the adoption of an uncritical approach to understanding the influence of biases in developers' decision-making. The BNA fosters dialogue and a critical stance among developers, guided by external experts, using graphical representations to depict biased connections. To test the BNA, we conducted a pilot case study on the "waiting list" project, involving a small AI developer team creating a healthcare waiting list NPL model in Chile. The analysis showed promising findings: (i) the BNA aids in visualizing interconnected biases and their impacts, facilitating ethical reflection in a more accessible way; (ii) it promotes transparency in decision-making throughout AI development; and (iii) more focus is necessary on professional biases and material limitations as sources of bias in AI development.
我们引入了偏差网络方法(BNA),这是一种社会技术方法,供人工智能开发者在整个人工智能开发过程中识别、绘制偏差图谱并关联各种偏差。这种方法解决了我们所称的“人工智能偏差的孤立主义方法”的局限性,这是人工智能文献中的一种趋势,即偏差被视为与人工智能流程中特定阶段相关的单独事件。处理这些多种偏差可能会在单独管理每个潜在偏差时引发过度负担感,或者促使采用不加批判的方法来理解偏差对开发者决策的影响。BNA在外部专家的指导下,通过使用图形表示来描绘有偏差的联系,促进开发者之间的对话和批判性立场。为了测试BNA,我们对“等候名单”项目进行了一个试点案例研究,该项目涉及智利一个小型人工智能开发者团队创建一个医疗等候名单自然语言处理模型。分析显示了有前景的结果:(i)BNA有助于可视化相互关联的偏差及其影响,以更易懂的方式促进伦理反思;(ii)它在整个人工智能开发过程中促进决策的透明度;(iii)在人工智能开发中,需要更多地关注作为偏差来源的专业偏差和物质限制。