Reason Tim, Klijn Sven, Rawlinson Will, Benbow Emma, Langham Julia, Teitsson Siguroli, Johannesen Kasper, Malcolm Bill
Estima Scientific, 2 Eastbourne Terrace, London, W2 6LG, UK.
Bristol Myers Squibb, Princeton, NJ, USA.
Pharmacoecon Open. 2025 Apr 29. doi: 10.1007/s41669-025-00580-4.
The emergence of generative artificial intelligence (GenAI) offers the potential to enhance health economics and outcomes research (HEOR) by streamlining traditionally time-consuming and labour-intensive tasks, such as literature reviews, data extraction, and economic modelling. To effectively navigate this evolving landscape, health economists need a foundational understanding of how GenAI can complement their work. This primer aims to introduce health economists to the essentials of using GenAI tools, particularly large language models (LLMs), in HEOR projects. For health economists new to GenAI technologies, chatbot interfaces like ChatGPT offer an accessible way to explore the potential of LLMs. For more complex projects, knowledge of application programming interfaces (APIs), which provide scalability and integration capabilities, and prompt engineering strategies, such as few-shot and chain-of-thought prompting, is necessary to ensure accurate and efficient data analysis, enhance model performance, and tailor outputs to specific HEOR needs. Retrieval-augmented generation (RAG) can further improve LLM performance by incorporating current external information. LLMs have significant potential in many common HEOR tasks, such as summarising medical literature, extracting structured data, drafting report sections, generating statistical code, answering specific questions, and reviewing materials to enhance quality. However, health economists must also be aware of ongoing limitations and challenges, such as the propensity of LLMs to produce inaccurate information ('hallucinate'), security concerns, issues with reproducibility, and the risk of bias. Implementing LLMs in HEOR requires robust security protocols to handle sensitive data in compliance with the European Union's General Data Protection Regulation (GDPR) and the United States' Health Insurance Portability and Accountability Act (HIPAA). Deployment options such as local hosting, secure API use, or cloud-hosted open-source models offer varying levels of control and cost, each with unique trade-offs in security, accessibility, and technical demands. Reproducibility and transparency also pose unique challenges. To ensure the credibility of LLM-generated content, explicit declarations of the model version, prompting techniques, and benchmarks against established standards are recommended. Given the 'black box' nature of LLMs, a clear reporting structure is essential to maintain transparency and validate outputs, enabling stakeholders to assess the reliability and accuracy of LLM-generated HEOR analyses. The ethical implications of using artificial intelligence (AI) in HEOR, including LLMs, are complex and multifaceted, requiring careful assessment of each use case to determine the necessary level of ethical scrutiny and transparency. Health economists must balance the potential benefits of AI adoption against the risks of maintaining current practices, while also considering issues such as accountability, bias, intellectual property, and the broader impact on the healthcare system. As LLMs and AI technologies advance, their potential role in HEOR will become increasingly evident. Key areas of promise include creating dynamic, continuously updated HEOR materials, providing patients with more accessible information, and enhancing analytics for faster access to medicines. To maximise these benefits, health economists must understand and address challenges such as data ownership and bias. The coming years will be critical for establishing best practices for GenAI in HEOR. This primer encourages health economists to adopt GenAI responsibly, balancing innovation with scientific rigor and ethical integrity to improve healthcare insights and decision-making.
生成式人工智能(GenAI)的出现,有望通过简化传统上耗时且劳动密集型的任务,如文献综述、数据提取和经济建模,来加强卫生经济学与结果研究(HEOR)。为了有效地应对这一不断演变的局面,卫生经济学家需要对GenAI如何补充他们的工作有一个基本的了解。本入门指南旨在向卫生经济学家介绍在HEOR项目中使用GenAI工具,特别是大语言模型(LLMs)的要点。对于刚接触GenAI技术的卫生经济学家来说,像ChatGPT这样的聊天机器人界面提供了一种易于探索LLMs潜力的方式。对于更复杂的项目,了解提供可扩展性和集成能力的应用程序编程接口(APIs)以及诸如少样本和思维链提示等提示工程策略,对于确保准确高效的数据分析、提高模型性能以及使输出符合特定的HEOR需求是必要的。检索增强生成(RAG)可以通过纳入当前外部信息进一步提高LLMs的性能。LLMs在许多常见的HEOR任务中具有巨大潜力,如总结医学文献、提取结构化数据、起草报告章节、生成统计代码、回答特定问题以及审查材料以提高质量。然而,卫生经济学家也必须意识到当前存在的局限性和挑战,例如LLMs产生不准确信息(“幻觉”)的倾向、安全问题、可重复性问题以及偏差风险。在HEOR中实施LLMs需要强大的安全协议,以符合欧盟的《通用数据保护条例》(GDPR)和美国的《健康保险流通与责任法案》(HIPAA)来处理敏感数据。诸如本地托管、安全API使用或云托管开源模型等部署选项提供了不同程度的控制和成本,每种在安全性、可访问性和技术要求方面都有独特的权衡。可重复性和透明度也带来了独特的挑战。为确保LLMs生成内容的可信度,建议明确声明模型版本、提示技术以及与既定标准的基准。鉴于LLMs的“黑箱”性质,清晰的报告结构对于保持透明度和验证输出至关重要,使利益相关者能够评估LLMs生成的HEOR分析的可靠性和准确性。在HEOR中使用包括LLMs在内的人工智能(AI)的伦理影响是复杂且多方面的,需要对每个用例进行仔细评估,以确定必要的伦理审查水平和透明度。卫生经济学家必须在采用AI的潜在好处与维持现有做法的风险之间取得平衡,同时还要考虑诸如问责制、偏差、知识产权以及对医疗系统的更广泛影响等问题。随着LLMs和AI技术的进步,它们在HEOR中的潜在作用将变得越来越明显。有希望的关键领域包括创建动态的、不断更新的HEOR材料,为患者提供更易获取的信息,以及加强分析以更快获得药物。为了最大限度地实现这些好处,卫生经济学家必须理解并应对诸如数据所有权和偏差等挑战。未来几年对于在HEOR中确立GenAI的最佳实践至关重要。本入门指南鼓励卫生经济学家负责任地采用GenAI,在创新与科学严谨性和道德完整性之间取得平衡,以改善医疗保健见解和决策。