Suppr超能文献

使用纤维素纳米晶体开发铈掺杂多孔复合气凝胶以增强二氧化碳捕获和转化

Development of cerium-doped porous composite aerogel using cellulose nanocrystals for enhanced CO capture and conversion.

作者信息

Xu Zihuai, Zheng Xudong, Ji Biao, Bao Sifan, Mei Jinfeng, Yang Zhouzhou, Rong Jian, Li Zhongyu

机构信息

School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China.

School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China.

出版信息

J Colloid Interface Sci. 2025 Apr;683(Pt 1):322-334. doi: 10.1016/j.jcis.2024.11.240. Epub 2024 Dec 12.

Abstract

Reducing carbon dioxide (CO) levels in the atmosphere is crucial for combating global warming. One effective strategy involves using porous materials for the combined processes of CO capture and catalytic conversion. In this study, we developed composite aerogel materials using cellulose nanocrystals (CNCs) as templates, doped with cerium oxide, to enhance CO capture and conversion. The CNCs possess a high specific surface area, which helps maintain the aerogel's internal structure, preventing the collapse of the silica aerogel during high-temperature calcination. This stability promotes CO diffusion within the material, aiding in its reduction. Additionally, during high-temperature calcination, cerium nitrate decomposes into cerium oxide and nitrogen oxides, creating a network of micro-nano composite pores on the material's surface. The porous carbon materials exhibit excellent CO adsorption capabilities, which are attributed to their rich and well-organized pore structures along with the synergistic effects of metal oxides. Our tests demonstrated that these materials have a high CO adsorption capacity of 3.18 mmol/g and are capable of converting CO into carbon monoxide and methane through photocatalytic reactions. This research offers new approaches for developing materials that integrate CO capture with conversion processes.

摘要

降低大气中的二氧化碳(CO)水平对于应对全球变暖至关重要。一种有效的策略是使用多孔材料进行二氧化碳捕获和催化转化的联合过程。在本研究中,我们以纤维素纳米晶体(CNC)为模板,掺杂氧化铈,开发了复合气凝胶材料,以增强二氧化碳的捕获和转化。纤维素纳米晶体具有高比表面积,有助于维持气凝胶的内部结构,防止二氧化硅气凝胶在高温煅烧过程中坍塌。这种稳定性促进了二氧化碳在材料内的扩散,有助于其还原。此外,在高温煅烧过程中,硝酸铈分解为氧化铈和氮氧化物,在材料表面形成微纳米复合孔网络。多孔碳材料表现出优异的二氧化碳吸附能力,这归因于其丰富且有序的孔结构以及金属氧化物的协同效应。我们的测试表明,这些材料具有3.18 mmol/g的高二氧化碳吸附容量,并且能够通过光催化反应将二氧化碳转化为一氧化碳和甲烷。这项研究为开发将二氧化碳捕获与转化过程相结合的材料提供了新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验