Suppr超能文献

Evidence of a Catalytic Dyad in F-Dependent Glucose-6-phosphate Dehydrogenase from .

作者信息

Aziz Alaa, Davis Lindsay A, Ramkissoon Ravi, Zeighami Neema, Lohtia Mansi, Howard Jamariya A, Baker Edward N, Bashiri Ghader, Johnson-Winters Kayunta L

机构信息

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States.

School of Biological Sciences and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand.

出版信息

Biochemistry. 2025 Jan 7;64(1):213-223. doi: 10.1021/acs.biochem.4c00557. Epub 2024 Dec 17.

Abstract

F-dependent glucose-6-phosphate dehydrogenase (FGD) catalyzes the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, using cofactor F as the hydride transfer acceptor. Our previous pH dependence studies suggested that E109 serves as an active site acid, donating a proton to the N-1 position of F, while leaving the role of H40 unanswered, which was previously suggested to serve as the active site base. This work utilizes thermodynamic and kinetic studies to elucidate additional mechanistic details concerning the roles of H40 and E13. The E13 residue had not previously been considered as a key player during catalysis. Therefore, the H40A, H40Q, E13A, and E13Q FGD variants were generated and fully characterized to determine their roles in catalysis. Here, we conducted temperature-dependent pH profiles and inactivation experiments using diethylpyrocarbonate (DEPC) to determine the role of H40 during catalysis. The temperature-dependent experiments suggest that an acidic histidine can donate a proton to E13. The inactivation experiments revealed monophasic kinetics, suggesting that the one active site H40 is covalently modified by DEPC. Therefore, the active site base is a deprotonated H40 that abstracts a proton from G6P, and then a hydride is transferred to the C-5 position of cofactor F. These data suggest that E13 and H40 act as a catalytic dyad. Global analysis of the pre-steady-state experiments revealed the accumulation of an intermediate, the spectrum of which resembles an enzyme-product complex. The global analysis also reveals fast chemistry and slow product release with cofactor association being rate-limiting in catalysis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验