Huang Huazhen, Shi Xianguo, Lei Hongyang, Hu Fan, Cai Yunpeng
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
J Chem Inf Model. 2025 Jan 13;65(1):62-70. doi: 10.1021/acs.jcim.4c01345. Epub 2024 Dec 17.
Large language models (LLMs) have transformed natural language processing, enabling advanced human-machine communication. Similarly, in computational biology, protein sequences are interpreted as natural language, facilitating the creation of protein large language models (PLLMs). However, applying PLLMs requires specialized preprocessing and script development, increasing the complexity of their use. Researchers have integrated LLMs with PLLMs to develop automated protein analysis tools to address these challenges, simplifying analytical workflows. Existing technologies often require substantial human intervention for specific protein-related tasks, maintaining high barriers to implementing automated protein analysis systems. Here, we propose ProtChat, an AI multiagent system for protein analysis that integrates the inference capabilities of PLLMs with the task-planning abilities of LLMs. ProtChat integrates GPT-4 with multiple PLLMs, like ESM and MASSA, to automate tasks such as protein property prediction and protein-drug interactions without human intervention. This AI agent enables users to input instructions directly, significantly improving efficiency and usability, making it suitable for researchers without a computational background. Experiments demonstrate that ProtChat can automate complex protein tasks accurately, avoiding manual intervention and delivering results rapidly. This advancement opens new research avenues in computational biology and drug discovery. Future applications may extend ProtChat's capabilities to broader biological data analysis. Our code and data are publicly available at github.com/SIAT-code/ProtChat.
大语言模型(LLMs)已经改变了自然语言处理,实现了先进的人机通信。同样,在计算生物学中,蛋白质序列被解释为自然语言,这促进了蛋白质大语言模型(PLLMs)的创建。然而,应用PLLMs需要专门的预处理和脚本开发,增加了其使用的复杂性。研究人员将LLMs与PLLMs集成,以开发自动化蛋白质分析工具来应对这些挑战,简化分析工作流程。现有技术在特定的蛋白质相关任务中通常需要大量人工干预,这使得自动化蛋白质分析系统的实施存在很高的障碍。在此,我们提出ProtChat,一种用于蛋白质分析的人工智能多智能体系统,它将PLLMs的推理能力与LLMs的任务规划能力集成在一起。ProtChat将GPT-4与多个PLLMs(如ESM和MASSA)集成,以实现蛋白质特性预测和蛋白质-药物相互作用等任务的自动化,无需人工干预。这种人工智能智能体使用户能够直接输入指令,显著提高了效率和可用性,并使其适用于没有计算背景的研究人员。实验表明,ProtChat可以准确地自动化复杂的蛋白质任务,避免人工干预并快速给出结果。这一进展为计算生物学和药物发现开辟了新的研究途径。未来的应用可能会将ProtChat的功能扩展到更广泛的生物数据分析。我们的代码和数据可在github.com/SIAT-code/ProtChat上公开获取。