文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大语言模型的工业应用。

Industrial applications of large language models.

作者信息

Raza Mubashar, Jahangir Zarmina, Riaz Muhammad Bilal, Saeed Muhammad Jasim, Sattar Muhammad Awais

机构信息

Department of Computer Science, COMSATS University, Sahiwal Campus, Islamabad, Pakistan.

Department of Computer Science, Riphah International University, Lahore Campus, Lahore, Pakistan.

出版信息

Sci Rep. 2025 Apr 21;15(1):13755. doi: 10.1038/s41598-025-98483-1.


DOI:10.1038/s41598-025-98483-1
PMID:40258923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12012124/
Abstract

Large language models (LLMs) are artificial intelligence (AI) based computational models designed to understand and generate human like text. With billions of training parameters, LLMs excel in identifying intricate language patterns, enabling remarkable performance across a variety of natural language processing (NLP) tasks. After the introduction of transformer architectures, they are impacting the industry with their text generation capabilities. LLMs play an innovative role across various industries by automating NLP tasks. In healthcare, they assist in diagnosing diseases, personalizing treatment plans, and managing patient data. LLMs provide predictive maintenance in automotive industry. LLMs provide recommendation systems, and consumer behavior analyzers. LLMs facilitates researchers and offer personalized learning experiences in education. In finance and banking, LLMs are used for fraud detection, customer service automation, and risk management. LLMs are driving significant advancements across the industries by automating tasks, improving accuracy, and providing deeper insights. Despite these advancements, LLMs face challenges such as ethical concerns, biases in training data, and significant computational resource requirements, which must be addressed to ensure impartial and sustainable deployment. This study provides a comprehensive analysis of LLMs, their evolution, and their diverse applications across industries, offering researchers valuable insights into their transformative potential and the accompanying limitations.

摘要

大语言模型(LLMs)是基于人工智能(AI)的计算模型,旨在理解和生成类人文本。凭借数十亿的训练参数,大语言模型擅长识别复杂的语言模式,在各种自然语言处理(NLP)任务中表现出色。自引入Transformer架构后,它们凭借文本生成能力对行业产生了影响。大语言模型通过自动化自然语言处理任务在各个行业中发挥着创新作用。在医疗保健领域,它们协助疾病诊断、制定个性化治疗方案以及管理患者数据。大语言模型在汽车行业提供预测性维护。大语言模型提供推荐系统和消费者行为分析工具。大语言模型为研究人员提供便利,并在教育领域提供个性化学习体验。在金融和银行业,大语言模型用于欺诈检测、客户服务自动化和风险管理。大语言模型通过自动化任务、提高准确性和提供更深入的见解,推动了各行业的重大进步。尽管取得了这些进展,大语言模型仍面临诸如伦理问题、训练数据中的偏差以及巨大的计算资源需求等挑战,必须解决这些问题以确保公正和可持续的部署。本研究对大语言模型、其发展历程以及在各行业的多样化应用进行了全面分析,为研究人员提供了关于其变革潜力和相关局限性的宝贵见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/7977a201b4e4/41598_2025_98483_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/211c0b7f613b/41598_2025_98483_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/16aed8fbafae/41598_2025_98483_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/6d0a72c4ba07/41598_2025_98483_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/754e9efce308/41598_2025_98483_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/7977a201b4e4/41598_2025_98483_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/211c0b7f613b/41598_2025_98483_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/16aed8fbafae/41598_2025_98483_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/6d0a72c4ba07/41598_2025_98483_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/754e9efce308/41598_2025_98483_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12012124/7977a201b4e4/41598_2025_98483_Fig5_HTML.jpg

相似文献

[1]
Industrial applications of large language models.

Sci Rep. 2025-4-21

[2]
Large Language Models in Worldwide Medical Exams: Platform Development and Comprehensive Analysis.

J Med Internet Res. 2024-12-27

[3]
Large language models for biomedicine: foundations, opportunities, challenges, and best practices.

J Am Med Inform Assoc. 2024-9-1

[4]
Potential of Large Language Models in Health Care: Delphi Study.

J Med Internet Res. 2024-5-13

[5]
Revolutionizing Health Care: The Transformative Impact of Large Language Models in Medicine.

J Med Internet Res. 2025-1-7

[6]
Developing healthcare language model embedding spaces.

Artif Intell Med. 2024-12

[7]
Large language models and their applications in bioinformatics.

Comput Struct Biotechnol J. 2024-10-5

[8]
Empowering large language models for automated clinical assessment with generation-augmented retrieval and hierarchical chain-of-thought.

Artif Intell Med. 2025-4

[9]
Exploring the benefits and challenges of AI-driven large language models in gastroenterology: Think out of the box.

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2024-11

[10]
The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.

JMIR Med Inform. 2024-5-10

引用本文的文献

[1]
Readability of AI-Generated Patient Information Leaflets on Alzheimer's, Vascular Dementia, and Delirium.

Cureus. 2025-6-6

本文引用的文献

[1]
PromptLink: Leveraging Large Language Models for Cross-Source Biomedical Concept Linking.

Int ACM SIGIR Conf Res Dev Inf Retr. 2024-7

[2]
Testing and Evaluation of Health Care Applications of Large Language Models: A Systematic Review.

JAMA. 2025-1-28

[3]
LLMs may improve medical communication: social science perspective.

Postgrad Med J. 2025-3-16

[4]
Large language models in health care: Development, applications, and challenges.

Health Care Sci. 2023-7-24

[5]
AI and Ethics: A Systematic Review of the Ethical Considerations of Large Language Model Use in Surgery Research.

Healthcare (Basel). 2024-4-13

[6]
Generative AI in healthcare: an implementation science informed translational path on application, integration and governance.

Implement Sci. 2024-3-15

[7]
Ethical and regulatory challenges of AI technologies in healthcare: A narrative review.

Heliyon. 2024-2-15

[8]
The Breakthrough of Large Language Models Release for Medical Applications: 1-Year Timeline and Perspectives.

J Med Syst. 2024-2-17

[9]
Leveraging Generative AI and Large Language Models: A Comprehensive Roadmap for Healthcare Integration.

Healthcare (Basel). 2023-10-20

[10]
Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm.

Front Artif Intell. 2023-8-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索