Raza Mubashar, Jahangir Zarmina, Riaz Muhammad Bilal, Saeed Muhammad Jasim, Sattar Muhammad Awais
Department of Computer Science, COMSATS University, Sahiwal Campus, Islamabad, Pakistan.
Department of Computer Science, Riphah International University, Lahore Campus, Lahore, Pakistan.
Sci Rep. 2025 Apr 21;15(1):13755. doi: 10.1038/s41598-025-98483-1.
Large language models (LLMs) are artificial intelligence (AI) based computational models designed to understand and generate human like text. With billions of training parameters, LLMs excel in identifying intricate language patterns, enabling remarkable performance across a variety of natural language processing (NLP) tasks. After the introduction of transformer architectures, they are impacting the industry with their text generation capabilities. LLMs play an innovative role across various industries by automating NLP tasks. In healthcare, they assist in diagnosing diseases, personalizing treatment plans, and managing patient data. LLMs provide predictive maintenance in automotive industry. LLMs provide recommendation systems, and consumer behavior analyzers. LLMs facilitates researchers and offer personalized learning experiences in education. In finance and banking, LLMs are used for fraud detection, customer service automation, and risk management. LLMs are driving significant advancements across the industries by automating tasks, improving accuracy, and providing deeper insights. Despite these advancements, LLMs face challenges such as ethical concerns, biases in training data, and significant computational resource requirements, which must be addressed to ensure impartial and sustainable deployment. This study provides a comprehensive analysis of LLMs, their evolution, and their diverse applications across industries, offering researchers valuable insights into their transformative potential and the accompanying limitations.
大语言模型(LLMs)是基于人工智能(AI)的计算模型,旨在理解和生成类人文本。凭借数十亿的训练参数,大语言模型擅长识别复杂的语言模式,在各种自然语言处理(NLP)任务中表现出色。自引入Transformer架构后,它们凭借文本生成能力对行业产生了影响。大语言模型通过自动化自然语言处理任务在各个行业中发挥着创新作用。在医疗保健领域,它们协助疾病诊断、制定个性化治疗方案以及管理患者数据。大语言模型在汽车行业提供预测性维护。大语言模型提供推荐系统和消费者行为分析工具。大语言模型为研究人员提供便利,并在教育领域提供个性化学习体验。在金融和银行业,大语言模型用于欺诈检测、客户服务自动化和风险管理。大语言模型通过自动化任务、提高准确性和提供更深入的见解,推动了各行业的重大进步。尽管取得了这些进展,大语言模型仍面临诸如伦理问题、训练数据中的偏差以及巨大的计算资源需求等挑战,必须解决这些问题以确保公正和可持续的部署。本研究对大语言模型、其发展历程以及在各行业的多样化应用进行了全面分析,为研究人员提供了关于其变革潜力和相关局限性的宝贵见解。
Sci Rep. 2025-4-21
J Med Internet Res. 2024-12-27
J Am Med Inform Assoc. 2024-9-1
J Med Internet Res. 2024-5-13
J Med Internet Res. 2025-1-7
Artif Intell Med. 2024-12
Comput Struct Biotechnol J. 2024-10-5
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2024-11
JMIR Med Inform. 2024-5-10
Int ACM SIGIR Conf Res Dev Inf Retr. 2024-7
Postgrad Med J. 2025-3-16
Health Care Sci. 2023-7-24
Healthcare (Basel). 2024-4-13
Healthcare (Basel). 2023-10-20
Front Artif Intell. 2023-8-29