Pal Mainak, Baez William D, Majumdar Pushan, Sen Arnab, Datta Trinanjan
School of Physical Sciences, <a href="https://ror.org/050p6gz73">Indian Association for the Cultivation of Science</a>, Kolkata 700032, India.
Department of Mathematical Sciences, <a href="https://ror.org/0055d0g64">United States Air Force Academy</a>, Colorado Springs 80840, USA.
Phys Rev E. 2024 Nov;110(5-1):054109. doi: 10.1103/PhysRevE.110.054109.
We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system. We identify four possible dynamical phases: Ising-SBO, Ising-SRO, XY-SBO, and XY-SRO. Both techniques indicate that only three of them (Ising-SRO, Ising-SBO, and XY-SRO) are stable dynamical phases in the thermodynamic sense. Within the Monte Carlo framework, a finite-size scaling analysis, shows that XY-SBO does not survive in the thermodynamic limit giving way to either an Ising-SBO or a XY-SRO regime. The finite-size scaling analysis further shows that the transitions between the three remaining dynamical phases either belong to the two-dimensional Ising universality class or are first-order in nature. Within the mean-field calculations yield three stable dynamical phases, i.e., Ising-SRO, Ising-SBO and XY-SRO, where the final steady state is independent of the initial condition chosen to evolve the equations of motion, as well as a region of bistability where the system flows to either Ising-SBO or XY-SRO (Ising-SRO) depending on the initial condition. Unlike the stable dynamical phases, the XY-SBO represents a transient feature that is eventually lost to either Ising-SBO or XY-SRO. Our mean-field analysis highlights the importance of the competition between switching of the stationary point(s) of the free energy after each half cycle of the external field and the two-dimensional nature of the phase space for the equations of motion.
我们研究了在对称方波形式的周期性驱动时间外磁场影响下,经典二维各向异性XY模型中出现的动力学相和相变。我们采用了有限温度经典蒙特卡罗模拟方法,该方法在CPU + GPU范式下实现,利用格劳伯算法提供的局部动力学以及基于平均场近似中随时间变化的自由能所支配的弛豫动力学的唯象运动方程方法来研究该模型。我们研究了影响各向异性XY系统的几个变量参数范围(磁场、各向异性和外部驱动频率)。我们确定了四种可能的动力学相:伊辛 - SBO、伊辛 - SRO、XY - SBO和XY - SRO。两种技术都表明,从热力学意义上讲,其中只有三种(伊辛 - SRO、伊辛 - SBO和XY - SRO)是稳定的动力学相。在蒙特卡罗框架内,有限尺寸标度分析表明,XY - SBO在热力学极限下不存在,而是让位于伊辛 - SBO或XY - SRO regime。有限尺寸标度分析进一步表明,其余三个动力学相之间的转变要么属于二维伊辛普适类,要么本质上是一阶的。在平均场计算中产生了三个稳定的动力学相,即伊辛 - SRO、伊辛 - SBO和XY - SRO,其中最终稳态与用于演化运动方程的初始条件无关,以及一个双稳区域,在该区域中系统根据初始条件流向伊辛 - SBO或XY - SRO(伊辛 - SRO)。与稳定的动力学相不同,XY - SBO代表一种瞬态特征,最终会转变为伊辛 - SBO或XY - SRO。我们的平均场分析突出了在外场的每个半周期后自由能驻点切换与运动方程相空间的二维性质之间竞争的重要性。