Rusch Regina, Chepizhko Oleksandr, Franosch Thomas
Institut für Theoretische Physik, Technikerstraße 21-A, <a href="https://ror.org/054pv6659">Universität Innsbruck</a>, A-6020 Innsbruck, Austria.
<a href="https://ror.org/01w08b546">Lakeside Labs</a> GmbH, Lakeside B04 b, A-9020 Klagenfurt, Austria.
Phys Rev E. 2024 Nov;110(5-1):054606. doi: 10.1103/PhysRevE.110.054606.
We analyze gravitaxis of a Brownian circle swimmer by deriving and analytically characterizing the experimentally measurable intermediate scattering function (ISF). To solve the associated Fokker-Planck equation, we use a spectral-theory approach, finding formal expressions in terms of eigenfunctions and eigenvalues of the overdamped-noisy-driven pendulum problem. We further perform a Taylor series of the ISF in the wavevector to extract the cumulants up to the fourth order. We focus on the skewness and kurtosis analyzed for four observation directions in the 2D plane. Validating our findings involves conducting Langevin-dynamics simulations and interpreting the results using a harmonic approximation. The skewness and kurtosis are amplified as the orienting torque approaches the intrinsic angular drift of the circle swimmer from above, highlighting deviations from Gaussian behavior. Transforming the ISF to the comoving frame, a measurable quantity, reveals gravitactic effects and diverse behaviors spanning from diffusive motion at low wavenumbers to circular motion at intermediate wavenumbers and directed motion at higher wavenumbers.
我们通过推导并解析表征实验可测量的中间散射函数(ISF)来分析布朗圆泳者的重力趋向性。为求解相关的福克 - 普朗克方程,我们采用谱理论方法,根据过阻尼噪声驱动摆问题的本征函数和本征值找到形式表达式。我们进一步对波矢中的ISF进行泰勒级数展开,以提取直至四阶的累积量。我们专注于在二维平面中四个观测方向上分析的偏度和峰度。验证我们的发现涉及进行朗之万动力学模拟,并使用谐波近似解释结果。当定向扭矩从上方接近圆泳者的固有角漂移时,偏度和峰度会增大,突出了与高斯行为的偏差。将ISF转换到共动参考系(一个可测量的量),揭示了重力趋向效应以及从低波数下的扩散运动到中间波数下的圆周运动再到高波数下的定向运动等多种行为。