Sato Kosuke, Inagi Shinsuke
Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
Small. 2025 Feb;21(6):e2410475. doi: 10.1002/smll.202410475. Epub 2024 Dec 17.
Morphology-controlled synthesis of covalent organic frameworks (COFs) offers significant potential for electrochemical applications. However, controlling the deposition of nanometer-scale COFs on carbon supports remains challenging due to the need for a slow COF generation rate and the dispersion of carbon supports in liquid-phase synthesis. In this study, nanometer-scale COF/carbon composites are fabricated using electrochemically generated acid (EGA) to assist in the formation of imine-type COFs, which are then deposited onto pre-cast nanocarbon supports on an electrode. A monomer combination of tri(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde is utilized due to their suitable oxidation potentials, with 1,2-diphenylhydrazine serving as the EGA source. Through proton generation driven by electrolysis conditions, controlled COF formation is achieved at the single nanometer scale, ranging from 6 to 30 nm, on various nanocarbon supports. The COF/carbon electrode is evaluated as an oxygen reduction reaction (ORR) electrocatalyst, demonstrating superior performance compared to other COF-based electrode materials containing the 1,3,5-triazine moiety. The findings experimentally validate the efficacy of the EGA-assisted COF deposition method for nanostructure construction and its ability to enhance the properties of COF-based electrodes through morphology tuning.
共价有机框架材料(COFs)的形貌控制合成在电化学应用方面具有巨大潜力。然而,由于需要缓慢的COF生成速率以及在液相合成中碳载体的分散性,控制纳米级COFs在碳载体上的沉积仍然具有挑战性。在本研究中,利用电化学产生的酸(EGA)辅助亚胺型COFs的形成,制备了纳米级COF/碳复合材料,然后将其沉积在电极上预先制备的纳米碳载体上。使用三(4-氨基苯基)-1,3,5-三嗪和2,5-二甲氧基苯-1,4-二甲醛的单体组合,因为它们具有合适的氧化电位,1,2-二苯基肼作为EGA源。通过电解条件驱动的质子生成,在各种纳米碳载体上实现了6至30纳米范围内的单纳米尺度的可控COF形成。将COF/碳电极评估为氧还原反应(ORR)电催化剂,与其他含有1,3,5-三嗪部分的基于COF的电极材料相比,表现出优异的性能。这些发现通过实验验证了EGA辅助COF沉积方法在纳米结构构建中的有效性及其通过形貌调节增强基于COF的电极性能的能力。