Suppr超能文献

用于高效太阳能电池的Z型Ba/GeC范德华异质结构的理论见解。

Theoretical insights into Z-scheme BAs/GeC van der Waals heterostructure for high-efficiency solar cell.

作者信息

Chaoui Khawla, Zanat Kamel, Elaggoune Warda, Henrard Luc, Achehboune Mohamed

机构信息

Guelma Physics Laboratory (GPL), Département des Sciences de la Matière, Faculté des Mathématiques, de l'informatique et des Sciences de la Matière, Université 8 Mai 1945 BP 401 Guelma Algeria

Laboratoire de Physique des Matériaux (L2PM), Département des Sciences de la Matière, Faculté des Mathématiques, de l'informatique et des Sciences de la Matière, Université 8 Mai 1945 BP 401 Guelma Algeria.

出版信息

RSC Adv. 2024 Dec 17;14(53):39625-39635. doi: 10.1039/d4ra08369e. eCollection 2024 Dec 10.

Abstract

The urgent need for solar electricity production is critical for ensuring energy security and mitigating climate change. Achieving the optimal optical bandgap and effective carrier separation, essential for high-efficiency solar cells, remains a significant challenge when utilizing a single material. In this study, we design a BAs/GeC heterostructure using density functional theory. Our findings indicate that the BAs/GeC heterostructure exhibits direct bandgap semiconductor characteristics. Notably, the BAs/GeC heterostructure demonstrates excellent optical absorption within the infrared and visible light spectrum. Moreover, significant carrier spatial separation was suggested, facilitated by a Z-scheme pathway. Furthermore, applying biaxial strains revealed that the BAs/GeC heterostructure is unstable under compressive strain. However, the electronic and optical properties can be tuned using tensile biaxial strains. The calculated power conversion efficiency (PCE) of the BAs/GeC heterostructure is approximately 31%, as determined by the Scharber method. Hence, the combination of an appropriate bandgap, substantial carrier separation, and superior photoelectric conversion efficiency positions the BAs/GeC heterostructure as a promising candidate for high-efficiency solar cells.

摘要

对太阳能发电的迫切需求对于确保能源安全和缓解气候变化至关重要。在使用单一材料时,实现高效太阳能电池所必需的最佳光学带隙和有效的载流子分离仍然是一项重大挑战。在本研究中,我们使用密度泛函理论设计了一种BAs/GeC异质结构。我们的研究结果表明,BAs/GeC异质结构具有直接带隙半导体特性。值得注意的是,BAs/GeC异质结构在红外和可见光谱范围内表现出优异的光吸收。此外,通过Z型途径促进了显著的载流子空间分离。此外,施加双轴应变表明,BAs/GeC异质结构在压缩应变下不稳定。然而,电子和光学性质可以通过拉伸双轴应变进行调节。根据Scharber方法确定,BAs/GeC异质结构的计算功率转换效率(PCE)约为31%。因此,合适的带隙、大量的载流子分离和优异的光电转换效率相结合,使BAs/GeC异质结构成为高效太阳能电池的有前途的候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验