Suppr超能文献

基于直觉模糊图的电动汽车电池无符号拉普拉斯能量感知决策

Signless Laplacian energy aware decision making for electric car batteries based on intuitionistic fuzzy graphs.

作者信息

Mohamed Atheeque A, Sharief Basha S

机构信息

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

Sci Prog. 2024 Oct-Dec;107(4):368504241301813. doi: 10.1177/00368504241301813.

Abstract

Fuzzy graphs (FGs) contain dual-nature characteristics that may be extended to intuitionistic fuzzy graphs. These FGs are better at capturing ambiguity in situations in reality involving decision-making than FGs. In this paper, we address decision-making problems based on intuitionistic fuzzy preference relations (IFPRs) by utilizing Signless Laplacian energy (S), intuitionistic fuzzy weighted averaging (IFWA), and intuitionistic fuzzy weighted averaging geometric (IFWAG). The paper suggests an approach that makes use of intuitionistic fuzzy graphs (IFG) and IFPR to optimize batteries for electric vehicles. Electric vehicles (EVs) performance, range, and efficiency are all dependent on battery technology. Research and technological developments may help remove adoption hurdles and increase public interest in EVs. Producers of batteries and automakers are investing in recycling and cost-cutting measures for manufacture. With the use of carbon nanotube electrodes, battery power may be increased tenfold beyond existing capabilities. In a procedure called group decision-making, experts evaluate and choose the best options based on present standards. This method provides crucial data for well-informed decision-making by capturing ambiguity and uncertainty in real-world decision-making. The strategy improves decision-making and maximizes profits, giving investors a useful foundation for choosing environmentally friendly electric vehicle batteries.

摘要

模糊图(FGs)具有双重性质特征,可扩展到直觉模糊图。这些模糊图在捕捉涉及现实决策情况中的模糊性方面比模糊图表现更好。在本文中,我们通过利用无符号拉普拉斯能量(S)、直觉模糊加权平均(IFWA)和直觉模糊加权平均几何(IFWAG)来解决基于直觉模糊偏好关系(IFPRs)的决策问题。本文提出了一种利用直觉模糊图(IFG)和IFPR来优化电动汽车电池的方法。电动汽车(EVs)的性能、续航里程和效率都依赖于电池技术。研究和技术发展可能有助于消除采用障碍并提高公众对电动汽车的兴趣。电池生产商和汽车制造商正在投资于回收利用和制造过程中的成本削减措施。通过使用碳纳米管电极,电池功率可在现有能力基础上提高十倍。在一个称为群体决策的过程中,专家们根据当前标准评估并选择最佳方案。该方法通过捕捉现实世界决策中的模糊性和不确定性,为明智决策提供关键数据。该策略改善决策并使利润最大化,为投资者选择环保型电动汽车电池提供了有用的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/701b/11788815/5b731d4f4c0d/10.1177_00368504241301813-fig1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验