Xiang Yu, Yang Fan, Yuan Fen, Gong Yuxia, Li Jing, Wang Xiaoxiao, Sun Xueliang, Zhang Heng, Wang Can, Zhu Zhenxing, Chen Qi, Chen Hongjin, Zhu Weiming, Qiao Lichao, Yang Bolin
IBD Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
First Clinical College of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Aliment Pharmacol Ther. 2025 Mar;61(5):824-834. doi: 10.1111/apt.18455. Epub 2024 Dec 18.
Diagnosis of Crohn's disease (CD) can pose challenges, particularly when perianal fistula is the initial presentation.
To develop and validate a predictive model, establishing a visual web tool for early diagnosis of CD in patients presenting with perianal fistula.
This retrospective, multicentre validation study involved patients diagnosed with either perianal fistulising CD or cryptoglandular fistula who underwent initial perianal fistula surgery subsequent to rectal MRI at three Chinese centres from September 2016 to December 2020. A random forest classification model was trained on the derivation cohort (n = 550), randomly split into training and test sets at a 7:3 ratio. Validation utilised data from two external centres (n = 300). Model interpretation employed the Shapley Addictive explanation (SHAP) framework. The validated model was integrated into a web tool for calculating patient-specific risk.
In the derivation cohort, SHAP analysis highlighted rectal wall ulceration, rectal wall thickening, submucosal fistula, and T2 hyperintensity as risk factors, while age was identified as protective. A random forest classification model developed using these top 5 features achieved an AUROC of 0.9425 (95% CI: 0.8943-0.9906). In the validation cohort, the model performed well with AUROC values of 0.9187 (95% CI: 0.8620-0.9754) and 0.9341 (95% CI: 0.8876-0.9806), respectively. We developed a publicly accessible web-based application.
We have developed a multimodal machine learning model and a web tool that can predict and present CD risk in patients initially presenting with perianal fistula.
克罗恩病(CD)的诊断可能具有挑战性,尤其是当肛周瘘管为首发表现时。
开发并验证一种预测模型,建立一个可视化网络工具,用于对以肛周瘘管就诊的患者进行CD的早期诊断。
这项回顾性、多中心验证研究纳入了2016年9月至2020年12月期间在中国三个中心接受直肠MRI检查后首次进行肛周瘘管手术的诊断为肛周瘘管型CD或隐窝腺性瘘管的患者。在推导队列(n = 550)上训练随机森林分类模型,按7:3的比例随机分为训练集和测试集。验证使用来自两个外部中心的数据(n = 300)。模型解释采用夏普利加性解释(SHAP)框架。将经过验证的模型集成到一个网络工具中,用于计算患者特定风险。
在推导队列中,SHAP分析突出显示直肠壁溃疡、直肠壁增厚、黏膜下瘘管和T2高信号强度为风险因素,而年龄被确定为保护因素。使用这前5个特征开发的随机森林分类模型的曲线下面积(AUROC)为0.9425(95%置信区间:0.8943 - 0.9906)。在验证队列中,该模型表现良好,AUROC值分别为0.9187(95%置信区间:0.8620 - 0.9754)和0.9341(95%置信区间:0.8876 - 0.9806)。我们开发了一个可公开访问的基于网络的应用程序。
我们开发了一种多模态机器学习模型和一个网络工具,可预测并呈现最初以肛周瘘管就诊的患者的CD风险。