Chowdhury Jabia M, Chacin Ruiz Eduardo A, Ohr Matthew P, Swindle-Reilly Katelyn E, Ford Versypt Ashlee N
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Electrical Engineering, Texas A&M University-Texarkana, Texarkana, TX, 75503, USA.
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
J Pharm Sci. 2025 Feb;114(2):1164-1174. doi: 10.1016/j.xphs.2024.12.005. Epub 2024 Dec 16.
Age-related macular degeneration (AMD) is a progressive eye disease that causes loss of central vision and has no cure. Wet AMD is the late neovascular form treated with vascular endothelial growth factor (VEGF) inhibitors. VEGF is the critical driver of wet AMD. One common off-label anti-VEGF drug used in AMD treatment is bevacizumab. Experimental efforts have been made to investigate the pharmacokinetic (PK) behavior of bevacizumab in vitreous and aqueous humor. Still, the quantitative effect of elimination routes and drug concentration in the macula are not well understood. In this work, we developed two spatial models representing rabbit and human vitreous to better understand the PK behavior of bevacizumab. This study explores different cases of drug elimination and the effects of injection location on drug concentration profiles. The models are validated by comparing them with experimental data. Our results suggest that anterior elimination is dominant for bevacizumab clearance from rabbit vitreous, whereas both anterior and posterior elimination have similar importance in drug clearance from the human vitreous. Furthermore, results indicate that drug injections closer to the posterior segment of the vitreous help maintain relevant drug concentrations for longer, improving bevacizumab duration of action in the vitreous. The rabbit and human models predict bevacizumab concentration in the vitreous and fovea, enhancing knowledge and understanding of wet AMD treatment.
年龄相关性黄斑变性(AMD)是一种会导致中心视力丧失且无法治愈的进行性眼病。湿性AMD是晚期新生血管形式,采用血管内皮生长因子(VEGF)抑制剂进行治疗。VEGF是湿性AMD的关键驱动因素。一种在AMD治疗中常用的非标签抗VEGF药物是贝伐单抗。人们已进行实验研究贝伐单抗在玻璃体和房水中的药代动力学(PK)行为。然而,黄斑中消除途径和药物浓度的定量影响仍未得到很好的理解。在这项工作中,我们开发了两个分别代表兔和人玻璃体的空间模型,以更好地理解贝伐单抗的PK行为。本研究探讨了药物消除的不同情况以及注射部位对药物浓度分布的影响。通过将模型与实验数据进行比较来验证模型。我们的结果表明,兔玻璃体中贝伐单抗清除的主要途径是前部消除,而人玻璃体中药物清除时前部和后部消除的重要性相似。此外,结果表明,药物注射部位越靠近玻璃体后段,有助于使相关药物浓度维持更长时间,从而提高贝伐单抗在玻璃体中的作用持续时间。兔和人模型预测了玻璃体和黄斑中心凹处的贝伐单抗浓度,增强了对湿性AMD治疗的认识和理解。